
/Depots/Kagou/Metis/Scriptorum/Rapports/RR0020_UBHF/RR0020A_UBHF-base.docx	
[CC-BY-NC-3.0	(http://creativecommons.org/licenses/by-nc/3.0)]	

1	/	22	

GRIIS	
Groupe	de	recherche	interdisciplinaire	en	

informatique	de	la	santé	
	

Faculté	des	sciences	et	Faculté	de	médecine	et	des	sciences	de	la	santé	
Université	de	Sherbrooke,	Québec	

	
RR0020A	

Automated	bitemporal	database	schema	design	with	a	unified	
framework	

	
Christina	Khnaisser1,2,	Luc	Lavoie1,	Anita	Burgun2,	and	Jean-Francois	Ethier1,2,3	(✉)	

	

1	Département	d’informatique,	Université	de	Sherbrooke,	Sherbrooke,	Canada	
{christina.khnaisser, luc.lavoie}@usherbrooke.ca

2	INSERM	UMR	1138	team	22	Centre	de	Recherche	des	Cordeliers,	Université	Paris	Descartes	

anita.burgun@aphp.fr

3	Département	de	médecine,	Université	de	Sherbrooke,	Sherbrooke,	Canada	
jf.ethier@usherbrooke.ca	

Abstract:	 Information	evolution	over	time	is	critical	for	many	analysis	purposes	and	essential	to	many	
applications.	Temporalization	adds	some	time	related	(temporal)	attributes	to	relations	but	it	is	
not	sufficient	to	track	all	changes.	Historicization	is	the	process	of	transforming	a	non-historical	
database	schema	into	a	historical	schema	allowing	data	evolution	traceability.	There	are	
complex	design,	query	and	modification	issues	that	need	to	be	addressed.	Existing	solutions	in	
temporal	databases	are	based	on	different	data	models	with	different	structures	and	semantics,	
making	comparison	and	selection	difficult.	Many	of	them	are	unable	to	use	directly	existing	
DBMS	to	store,	manage	or	query	temporal	data.	Furthermore,	methods	published	until	now	
propose	transformation	rules	by	providing	various	examples.	As	a	result,	real-world	
applications	require	manual	adaptations	and	implementations.	This	article	demonstrates	the	
integration	and	generalization	of	two	major	temporal	models	(the	Bitemporal	Conceptual	Data	
Model	and	the	Date-Darwen-Lorentzos	Model)	in	terms	of	views	defined	using	the	Unified	
Bitemporal	Historicization	Framework.	Using	this	framework,	historicization	is	defined	as	a	
suite	of	simple	automated	steps.	The	primary	aim	of	this	work	is	to	help	database	designers	to	
model	historicized	schema	based	on	a	sound	theory	ensuring	a	sound	temporal	semantic,	data	
integrity,	query	expressiveness	and	guided	automation.	

Keywords:	 Data	warehouse	design,	Temporal	data	warehouse,	Temporal	indeterminacy.	

Revision	history:	

version	 date	 author	 description	
1.0.0a	 2017-mm-jj	 XX	 ...	
0.2.0a	 2016-03-15	 CK	 Revue	et	ajouts	en	lien	avec	la	rédaction	de	l’article	pour	VLDB	2017.	
0.1.0a	 2017-03-01	 LL	 Première	esquisse	à	partir	du	modèle	GRIIS_gabarit,	version	022a.	
	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
2	/	22	

Table	of	contents	

1	 Introduction	..	2	
2	 UBHF	concepts	..	3	
2.1	 Time	model	..	3	
2.2	 Timelines	categorization	..	4	
2.3	 Timeline	attributes	and	values	..	5	
2.4	 Attributes	categorization	...	5	
2.5	 Relation	categorization	...	5	
2.6	 Data	inconsistency	..	7	

3	 UBHF	historicization	..	7	
3.1	 Schema	requirements	..	8	
3.2	 Schema	structure	...	8	
3.3	 Constraints	..	10	

4	 Modification	..	13	
4.1	 Insertion	...	13	
4.2	 Deletion	...	15	
4.3	 Update	...	15	

5	 Coping	with	missing	information	..	16	
6	 Models	as	UBHF	views	...	17	
6.1	 UBHM	as	a	UBHF	view	..	17	
6.2	 BCDM	a	UBHM	view	..	17	
6.3	 Bitemporal	DDLM	as	a	UBHM	view	..	18	

7	 Discussion	...	18	
7.1	 BCDM	and	DDLM	comparison	...	19	
7.2	 BCDM	and	DDLM	usage	...	19	
7.3	 Limitations	..	19	
7.4	 Further	work	..	20	

8	 Conclusion	...	20	
9	 References	...	20	
10	 Appendix	..	22	

	

1 Introduction	
While	temporal	aspects	in	databases	have	been	explored	for	more	than	thirty	years,	it	remains	a	major	issue	
which	 does	 not	 [16]	 yet	 have	 a	 consensual	 solution	 in	 part	 because	 proposed	 approaches	 are	 various	 in	
nature	 and	 focus	 on	 a	 specific	 domain	 which	 creates	 significant	 challenges	 to	 extend	 or	 reuse	 them.	
Consequently,	 interoperability	remains	a	key	 issue	when	 temporal	data	need	 to	be	collected	 from	different	
sources	(which	may	have	used	different	 temporal	models),	a	 typical	problem	in	data	warehouses	 [15].	The	
goal	 of	 historicization	 is	 to	 produce	 a	 schema	 with	 a	 unified	 temporal	 semantic	 and	 temporal	 constraint	
management	 capable	 of	 keeping	 track	 of	 data	 evolution	 in	 a	 general	 manner	 independently	 from	 the	
application	 domain.	 The	 database	 schema	 must	 be	 based	 on	 a	 sound,	 comprehensive	 and	 formalized	
temporal	 model	 to	 improve	 expressiveness	 and	 interoperability.	 Another	 major	 challenge	 appears	 when	
designing	 a	 historical	 schema:	 to	 guarantee	 data	 consistency	 respective	 to	 intrinsic	 temporal	 rules	 and	
specific	business	rules.	As	a	result,	designing	a	historical	schema	is	a	complex	and	error-prone	process	if	done	
manually.	In	fact,	it	is	essential	to	have	a	general	model	independent	of	the	field	of	application	to	reflect	the	
intrinsic	nature	of	the	historical	data.	

Two	major	temporal	models	have	emerged	in	the	 literature	and	in	our	practice	(clinical	data	warehousing)	
[15].	 The	 first	 one	 is	 the	 Bitemporal	 conceptual	 data	 model	 (BCDM)	 a	 bitemporal	 model	 based	 on	 SQL.	
Snodgrass	presents	design	 “best	practices”	 to	build	a	bitemporal	 schema	starting	 from	a	 conceptual	model	
(entity	relationship)	ending	with	SQL	code	()1.	BCDM	was	initially	defined	in	[13],	a	more	recent	presentation	
can	be	found	in	[21]	and	an	extension	to	temporal	indeterminacy	in	[3].	

																																								 																					
1	 TSQL2	[22],	a	temporal	SQL	extension,	is	also	a	possible	target.	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
3	/	22	

The	 second	 one	 is	 the	 Date-Darwen-Lorentzos	 Model	 (DDLM)	 which	 is	 based	 on	 the	 relational	 theory.	 It	
proposes	three	sub-models,	two	unitemporal	model	and	one	bitemporal	model	based	on	the	third	manifesto	
relational	 model	 [8]	 and	 Allen’s	 interval	 logic	 [1].	 DDLM	 also	 includes	 a	 simple	 design	 technique	 and	 an	
extension	 for	 TutorialD	 (e.g.	 PACK,	 UNPACK,	 and	 USING	 relational	 operators)	 to	 facilitate	 temporal	 data	
management	and	temporal	queries.	DDLM	was	 initially	defined	 in	[17]	and	a	more	recent	definition	can	be	
found	in	[10].		

Both	models	 need	 adaptation	 and	 contextualization	 to	manage	 a	 specific	 schema	 historicization.	 They	 are	
difficult	 to	compare	one	 to	another	and	seems	hardly	 interoperable	when	sources,	built	according	 to	 them,	
must	be	included	in	the	same	data	warehouse.	Also,	neither	of	those	two	models	offers	a	strong	solution	to	
cope	with	missing	 information,	which	 is	 often	 required.	 Consequently,	 a	 unifying	model	 able	 to	 represent	
correctly,	at	 least,	BCDM	and	DDLM	with	the	provision	to	cope	with	missing	data	would	be	a	very	valuable	
tool.	

This	 article	 presents	 a	 new	 approach	 to	 automate	 the	 historicization	 of	 a	 database	 schema	 based	 on	
fundamental	temporal	relational	concepts,	a	uniform	structure	and	domain-independent	constraints.	First	a	
unified	bitemporal	historicization	framework	(UBHF)	is	described	and	an	automatic	historicization	is	defined.	
BCDM	and	DDLM	are	then	represented	as	relational	views	defined	on	a	UBHF-compliant	model	(UBHM)	and	
compared.	

The	article	is	organized	as	follows.	Section	2	presents	definitions	of	UBHF	base	concepts.	Section	3	defines	the	
historicization	 built	 on	UBHF	 concepts,	 including	 schema	 structure,	 constraints	 and	 temporal	modification	
operations.	Section	4	presents	a	DDLM	and	BCDM	as	views	using	UBHM.	Section	5	discusses	the	similarities	
and	differences	between	BCDM	and	DDLM.	Finally,	section	6	concludes	with	the	contribution	summary	and	
future	work	proposals.	

2 UBHF	concepts	
UBHF	 is	 a	 conceptual	 framework	 that	 defines	 temporal	 stereotypes	 based	 on	 fundamental	 relational	 and	
temporal	 concepts	 [10,	21].	More	precisely,	 the	proposed	 framework	 is	based	on	 the	 relational	 theory	and	
normalization	 (especially	 fifth	 and	 sixth	 normal	 form	—	5NF	 and	 6NF)	 as	 described	 in	 [6,	 8]	 and	 interval	
temporal	logic	as	described	in	[1,	2].	Using	a	close	variant	of	the	TutorialD	language,	this	section	presents	the	
basic	concepts	(most	of	them	being	defined	in	[10],	as	well	as	the	TutorialD	language	itself)	and	stereotypes	
used	in	UBHF.	

2.1 Time	model	
UBHF	uses	a	discrete	time	model	based	on	points	and	intervals	derived	from	the	one	defined	in	[1]	and	used	
in	[10]	where	more	comprehensive	definitions	may	be	found.	

A	 point	 type	 is	 any	 discrete,	 ordinal,	 bounded	 type.	 The	 minimum	 value	 is	 denoted	 alpha	 (α)	 and	 the	
maximum	value	omega	(ω).	Given	a	point	type	P	=	{p0,	…,	pn-1},	 then	α	=	p0	<	…	<	pn-1	=	ω	and	the	following	
operators	are	defined	for	p	∊	P:	FIRST(p)	=	α;	LAST(p)	=	ω;	if	pi	>	α,	PRIOR(pi)	=	pi-1;	if	pi	<	ω,	NEXT(pi)	=	pi+1.	

An	 interval	 type	 over	 a	 point	 type	 P,	 denoted	 INTERVAL[P],	 is	 the	 set	 of	 all	 non-empty	 sets	 of	 contiguous	
points	bounded	on	both	ends.	An	interval	where	the	begin	point	is	equal	to	the	end	point	is	a	singleton	(aka	
unit	interval),	it	is	a	non-decomposable	interval	(the	empty	set	is	not	an	interval).	Given	pb,	pe	∈	P,	pb	≤	pe,	
i	=	[pb:pe]	∈	INTERVAL[P],	then	i	=	{pi	∈	P	|	pb	≤	pi	≤	pb}	and	the	following	operators	are	defined:	BEGIN(i)	=	
pb;	END(i)	=	pe;	if	pb	>	α,	PRE(i)	=	PRIOR(pb);	if	pe	<	ω,	POST(i)	=	NEXT(pb);	CARD(i)	is	the	cardinality	of	the	
set	i.	

Note	also	that	different	period	notation	(closed-closed,	open-closed,	closed-open,	open-open)	can	be	found	in	
the	literature.	Without	loss	of	generality,	UBHF	uses	the	closed-closed	notation	since	the	other	notations	:	

[b:e]	=	(b-1:e]	=	[b:e+1)	=	(b-1:e+1)	

are	equivalent	except	when	the	bounds	(α	and	ω)	are	involved.	In	these	cases,	only	the	closed-closed	notation	
covers	all	the	values	in	INTERVAL[P]	in	a	well-defined	manner.	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
4	/	22	

2.1.1 Other	operators	
For	comparison	purposes,	13	Allen’s	 interval	operators	[1]	are	used	to	compute	relationships	between	two	
intervals.	Furthermore,	generalized	definitions	of	the	set	operators	and	of	the	standard	comparison	operators	
can	 be	 applied	 to	 intervals	 to	 manage	 data	 inconsistency.	 Extension	 to	 the	 relational	 operators	 are	 also	
defined	 to	address	 relations	with	 interval	 type	attributes.	Here,	we	especially	 consider	PACK,	UNPACK	and	
USING.	 Informally,	 the	PACK	operator	collapses	value-equivalent2	 tuples	 (of	a	 relation)	having	periods	 that	
merge	 (overlap	or	meet),	 the	UNPACK	operator	 expands	 a	 tuple	 (of	 a	 relation)	 into	multiple	 tuples	where	
each	has	a	singleton	interval	value	and	USING	is	a	shorthand	of	a	combination	of	UNPACK	and	PACK.	

2.1.2 Time	representation	
A	 “time	 point	 type”,	 say	 TIMEPOINT,	 is	 a	 point	 type	 associated	with	 two	more	 properties:	 the	 granularity	
denoted	 gamma	 (γ)	 and	 the	 origin	 denoted	 phi	 (φ).	 The	 granularity	 represents	 the	 constant	 duration	
between	two	consecutive	points.	The	origin	represents	the	time	point	value	associated	to	α	in	a	convenient	
agreed	time	reference	(such	as	a	calendar).	Let	DATETIME	be	a	totally	ordered	set	of	Calendar	time	reference	
values,	let	date(p)	be	a	function	from	TIMEPOINT	to	DATETIME	such	that:	

à date(α)	=	φ	
à pi	<	pj	⇒	date(pi)	≤	date(pj)	
à dk	<	dℓ	⇒	date-1(dk)	≤	date-1(dℓ)	

An	 interval	 defined	 over	 a	 time	 point	 type	 is	 a	 “time	 interval”,	 e.g.:	 INTERVAL[TIMEPOINT].	 A	 time	 unit	
interval	is	called	a	moment	[2].	Figure	1	below	illustrates	informally	the	concepts	of	the	time	model.	Let	i	be	a	
time	interval:	

à duration(i)	=	CARD(i)	*	γ	

The	figure	below	illustrates	these	definitions.	

	

Figure	1.	UBHF	time	model.	

Example:	TIMEPOINT	⊂	ℕ	with	α	=	1	≤	p	≤	ω	=	99;	γ	=	84	600	s	and	φ	=	1970-01-01T00:00:00Z.	Given	p	=	3,	
FIRST(p)	=	1,	LAST(p)	=	99,	PRIOR(p)	=	2	and	NEXT(p)	=	4;	with	PRIOR(1)	and	NEXT(99)	being	undefined.	

Example:	 PERIOD	=	INTERVAL[TIMEPOINT].	 Given	 an	 interval	 value	 i	=	[3:6]	=	{3,	 4,	 5,	 6},	 BEGIN(i)	=	3,	
END(i)	=	6,	PRE(i)	=	2,	POST(i)	=	7	and	CARD(i)	=	4.	

TIMPEPOINT	 and	 PERIOD	 will	 be	 used	 as	 a	 representative	 time	 point	 type	 and	 time	 interval	 type	 in	 the	
following.	

2.2 Timelines	categorization	
There	are	several	timelines	(aka	time	dimensions	and	time	axis)	defined	in	the	database	literature:	valid	time,	
transaction	time,	decision	time,	event	time,	etc.	[7].	One	of	our	goal	is	to	integrate	BCDM	et	DDLM	in	a	single	
framework,	UBHF.	Consequently,	valid	and	transaction	times	are	needed	(although	various	labels	are	used	for	

																																								 																					
2	Two	tuples	are	value-equivalent	when	all	their	non-key	attributes	have	the	same	value.	

Discrete	model	

	Continuous	perception
-	∞ +	∞

p i	
α ω

γ

Calandar	model
φ

duration

d

date(p)

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
5	/	22	

valid	(e.g.:	validation,	user,	stated)	and	transaction	(e.g.:	system,	logged).	The	other	timelines	are	considered	
as	 domain	 specific	 timelines	 and	 do	 not	 have	 a	 special	 treatment	 in	 the	 framework.	 As	 in	 the	 consensus	
glossary	of	temporal	database	[12],	the	retained	timelines	are	defined	as	follows:		

à Transaction	 time	 (@T):	 “The	 transaction	 time	 of	 a	 fact	 is	 the	 time	 when	 the	 fact	 is	 current	 in	 the	
database	and	may	be	retrieved.”	It	cannot	be	modified	by	the	user.	It	is	used	to	provide	tuple	correction	
traceability.		

à Valid	time	(@V):	“The	valid	time	of	a	fact	is	the	time	when	the	fact	is	true	in	the	modelled	reality.”	It	can	
be	modified	by	the	user	or	the	system.	It	is	used	to	provide	fact	traceability	in	the	real	world.	

2.3 Timeline	attributes	and	values	
In	a	relation,	a	timeline	is	represented	by	an	attribute	(called	timeline	attribute).	A	timeline	attribute	can	have	
different	types	and	values	defined	as	follow:	

à be:	A	period	timeline	attribute	where	the	beginning	and	the	end	point	values	are	known.	The	associated	
“proposition	is	true	from	b	to	e”.	In	other	words,	for	each	point	included	in	the	period	the	proposition	is	
true.	

à bx:	A	point	timeline	attribute	with	unknown	end	value	where	the	beginning	point	is	known	and	the	end	
is	unknown.	The	associated	“proposition	is	true	from	b	until	(now,	ufn,	or	ω)”.	

Depending	on	the	timeline	represented,	the	table	below	defines	the	notation	used.	

Table	1.	Timeline	attributes	notation.	

Notation	 Definition	 Timeline	
@Vbe	 Valid	time	period	

Valid	
@Vbx	 Valid	time	point		
@Tbe	 Transaction	time	period	

Transaction	
@Tbx	 Transaction	time	point		

2.4 Attributes	categorization	
In	 a	 non-historical	 schema,	 we	 conventionally	 distinguish	 between	 key	 and	 non-key	 attributes.	 A	 non-
historicized	relation	R	is	denoted	R(K,	A)	where:	

à K	=	{k1,…,k|K|}	 is	 the	 set	 of	 key	 attributes	 (|K|	 ≥	 1).	Without	 loss	 of	 generality,	we	 consider	 that	 each	
relation	contains	only	one	key	-	although	this	key	may	have	more	than	one	attribute.	

à A	=	{a1,…,a|A|}	is	the	set	of	non-key	attributes	(|A|	≥	0).	

A	historicized	relation	R	is	denoted	R’(K,	B,	C,	DV,	DT)	with	A	=	B	∪	C	where:	
à B	=	{b1,…,b|B|}	is	the	set	of	non-key	attributes	(|B|	≥	0)	associated	with	a	valid	timeline	attribute	(called	
historicized	attributes);	B	is	a	subset	of	A.	

à C	=	{c1,…,c|C|}	 is	 the	 set	 of	 non-key	 attributes	 (|C|	 ≥	 0)	 not	 associated	 with	 a	 valid	 timeline	
attribute(called	non-historicized	attributes);	C	is	a	subset	of	A.	

à DV	=	{@V,	 b1@V,…,	 b|B|@V}	 is	 the	 set	 of	 valid	 timeline	 attributes,	 with	 the	 following	 notations	@V	 is	
associated	with	K,	and	bi@V	is	associated	to	bi	∈	B.	

à DT	=	{@T,	b1@T,…,	b|A|@T}	 is	 the	 set	of	 transaction	 timeline	attribute	where	@T	 is	associated	with	K,	
and	bi@T	is	associated	with	bi	∈	B.		

Remark.	Regarding	R’,	K	and	“key”	do	not	refer	to	the	same	set	of	attributes.	K	is	the	key	set	of	R	and	“key”	
refers	to	the	key	set	of	R’	(that	contains	K	and	their	associated	timeline	attributes,	if	applicable).	

2.5 Relation	categorization	
Like	attributes,	 relations	 in	a	 temporal	schema	are	categorized	depending	on	 the	 timelines	contained	 in	DV	
and	DT.	Four	categories	are	distinguished.	

à Non-historicized	relation	(!N):	 a	 relation	R	 is	non-historicized,	denoted	R!N,	 if	 it	 contains	only	non-
historicized	attributes.	Formally,	R	 is	defined	as	R@N(K,	 {},	C,	 {},	 {})	with	 |B|	=	0,	 |C|	≥	0,	 |DV|	=	0	and	
|DT|	=	0.	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
6	/	22	

à Valid-time	relation	(!V):	a	relation	R	is	a	valid-time	relation	(and	denoted	R!V),	 if	 it	contains	at	 least	
one	valid	timeline	attribute	and	no	transaction	timeline	attribute.	Formally,	R	is	defined	as	R@V(K,	B,	C,	
DV,	 {})	 with	 |B|	 ≥	 0,	 |C|	 ≥	 0,	 |Dv|	=	|B|+1	 and	 |DT|	=	0.	 One	 valid	 timeline	 attribute	 denoted	 @V	 is	
associated	to	the	set	K	and	each	bi	in	B	is	associated	to	valid	timeline	attribute	denoted	bi@V.	

à Transaction-time	relation	(!T):	a	relation	R	is	a	transaction-time	relation,	denoted	R!T,	if	it	contains	at	
least	one	transaction	timeline	attribute	and	no	valid	timeline	attribute.	Formally,	R	is	defined	as	R@T(K,	
{},	C,	{},	DT)	with	|B|	=	0,	|C|	≥	0,	|DV|	=	0	and	|DT|	≥	1.	One	transaction	timeline	attribute	denoted	@T	is	
associated	to	the	set	K,	each	bi	in	B	is	associated	to	the	transaction	timeline	attribute	denoted	bi@T,	and	
each	ci	in	C	is	associated	to	the	transaction	timeline	attribute	denoted	ci@T.	

à Bitemporal	 relation	 (!VT):	 a	 relation	 R	 is	 a	 bitemporal	 relation,	 denoted	 R!VT,	 if	 it	 contains	 valid	
timeline	and	transaction	timeline	attributes.	Formally,	R	is	defined	as	R@VT(K,	B,	C,	DV,	DT)	with	|B|	≥	0	
|C|	≥	0,	|DV|	=	|B|	+	1	and	|DT|	≥	1.	

Example.	Consider	the	“non-historicized”	predicate:	The	patient	identified	by	“pNo”	is	born	on	“birth”	and	has	
a	health	status	“hS”.	With	PN,	DATE	and	HS	being	the	corresponding	attribute	types,	the	standard	notation	of	
the	relation	(variable)	PatientHS	is:	

PatientHS(pNo:PN, birth:DATE, hS:HS)

The	non-historicized	relation	is	denoted	as	follows	(types	are	omitted	for	simplicity):	

PatientHS({pNo}, {hS, birth})

and	the	same	historicized	relation	is	denoted	as	follows:	

PatientHS!N({pNo}, {}, {hS, birth}, {}, {})

A	relation	value	is	assigned	to	the	variable	PatientHS	as	follows	(for	simplicity	health	status	is	considered	as	
an	code	represented	as	an	integer):	

PatientHS := RELATION
{
TUPLE {pNo PN(N01), birth “1980-08-08”, hS HS(20)}
TUPLE {pNo PN(N02), birth “1960-06-06”, hS HS(10)}
};

Assume	 now	 that	we	want	 to	 keep	 track	 of	 the	 validity	 evolution	 of	 the	 patient	 identifier	 and	 this	 health	
status	only3.	Valid	timeline	attribute	@V	and	hS@V	are	added	and	associated	respectively	with	pNo	and	hS.	
The	predicate	becomes:	The	patient	identified	by	“pNo”	during	“@V”	is	born	on	“birth”	and	has	a	health	status	
“hS”	during	“hS@V”.	The	relation	denotation	becomes:	

PatientHS!V({pNo}, {hS}, {birth}, {@V, hS@V}, {})

We	may	then	be	interested	to	keep	track	of	the	modifications	as	they	were	registered	by	the	database	server.	
We	do	so	by	adding	a	transaction	timeline	attribute	associated	with	the	whole	tuple.	The	predicate	becomes:	
The	fact	that	the	patient	identified	by	“pNo”	is	born	on	“birth”	and	has	a	health	status	“hS”	is	represented	in	
the	database	during	“@T”.	The	relation	denotation	becomes:	

PatientHS!T({pNo}, {}, {hS, birth}, {}, {@T})

Now,	we	may	be	interested	in	the	combination	of	the	 last	two	definitions.	The	predicate	becomes:	The	fact	
that	the	patient	identified	by	“pNo”	during	“@V”	is	born	on	“birth”	and	has	a	health	status	“hS”	during	“hS@V”	
is	representd	in	the	database	during	“@T”.	The	relation	denotation	becomes:	

PatientHS!VT({pNo},{hS},{birth},{@V, hS@V},{@T})

																																								 																					
3	 Note	that	the	“birth”	attribute	could	have	been	historicized,	but	we	decided	not	to	keep	track	of	its	evolution	so	a	C	set	member	can	be	
shown.	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
7	/	22	

	

Figure	2.	Illustration	of	the	temporal	relations	

2.6 Data	inconsistency	
Data	inconsistency	is	mainly	related	to	the	following	problems:	missing	information,	volatility	and	integrity	
(which	 includes	 redundancy,	 contradiction,	 circumlocution	 and	 non-denseness)	 [10].	 Data	 inconsistency	
makes	temporal	updates,	and	querying	tedious	and	error-prone.	More	precisely,	data	inconsistency	forces	the	
application	developer	to	build	ad	hoc	functions	that	are	difficult	to	maintain	and	can	easily	be	misinterpreted	
by	others	causing	un-intended	effects	and	unsatisfying	(even	inaccurate)	results.		

2.6.1 Temporal	volatility	
Dealing	with	temporal	volatility	(also	called	“moving	point”,	 “now”,	or	“now-relative	data”	problem)	 is	very	
important	 in	 a	 temporal	 model.	 Different	 solutions	 have	 been	 proposed	 in	 the	 literature:	 DDLM	 avoid	
maintaining	 a	now	 special	 value	 using	 design	 techniques	 [10];	 BCDM	uses	 special	 values	 forever	 and	 until	
changed	for	valid	timeline	and	transaction	timeline	respectively	[21];	others	use	NULL,	FIRST(),	LAST(),	etc.	
An	 interesting	 survey	 of	 different	 solutions	 can	 be	 found	 in	 [4].	 In	UBHF,	 the	DDLM	 foundation	 is	 used	 to	
avoid	data	inconsistencies	and	ambiguities	that	can	be	so	easily	be	introduced.	

2.6.2 Temporal	integrity	
Keeping	history	changes	may	introduce	redundancy,	contradiction,	circumlocution	and	non-denseness	when	
attributes	in	the	same	relation	are	modified	independently.	Here’s	an	informal	definition	of	these	problems:		

à Redundancy	occurs	when	two	value-equivalent	tuples	overlap	in	time.	
à Contradiction	occurs	when	two	tuples	having	identical	key	values	but	different	non-key	attributes	value	
overlap	in	time.	

à Circumlocution	occurs	when	 two	value-equivalent	 tuples	meets	 in	 time	 (one	 follows	 immediately	 the	
other).	

à Denseness	 guarantees	 that	when	an	attribute	 value	 is	 known	 for	 a	 key	value	 at	 some	 time	point,	 the	
value	of	all	other	attributes	dependent	of	the	same	key	is	known	as	well	at	the	same	time	point.	

DDLM	studied	 these	problems	 in	detail	 [10]	 (chap.	5	and	13)	and	proposed	constraints	 to	avoid	 them.	See	
section	3.3	for	the	constraint	definitions.	

2.6.3 Missing	information	
Missing	 information	 is	unavoidable	 in	many	context.	Many	approaches	has	been	proposed	 in	 the	 literature	
using	3-valued	logic	(SQL	NULL	approach),	4-valued	logic	[5],	fuzzy	logic	[19],	relational	design	with	vertical	
and	 horizontal	 decomposition	 [9,	 11],	 default	 values,	 etc.	 The	 presentation	 and	 the	 defence	 of	 the	 various	
positions	to	address	the	missing	information	problem	is	out	of	the	scope	of	this	paper,	but	a	neutral	basis	will	
be	suggested	in	section	3.5.	

3 UBHF	historicization	
Given	clear	requirements,	handling	data	 inconsistency	 in	a	historical	schema	can	be	achieved	by	defining	a	
suitable	historical	structure	and	appropriate	constraints.	

pNo
hS
birth

PatientHS!N pNo
@V
hS
hS@V
birth

PatientHS!V

pNo
hS
birth
@T

PatientHS!T pNo
@V
hS
hS@V
birth
@T

PatientHS!VT

Non-temporal relation Valid-time relation Transaction-time relation Bitemporal relation

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
8	/	22	

3.1 Schema	requirements	
The	initial	(non-historicized)	schema	must	respect	some	requirements	to	allow	the	automatic	historicization	
and	 to	 ensure	 data	 consistency	 of	 the	 final	 (historicized)	 schema.	 The	 initial	 schema	must	 be	 a	 relational	
schema	with	respect	to	the	relational	theory	and	must	satisfy	the	requirements	below:	

à The	schema	is	in5NF,	ensuring	that	unnecessary	duplicates	are	already	eliminated.	
à Each	relation	contains	only	one	(candidate)	key.	However,	this	key	may	have	more	than	one	attribute.	
à If	valid	timeline	information	is	not	available	for	some	attributes,	they	must	be	identified	(in	the	C	set).	

The	final	historical	schema	(the	output	of	the	historicization)	must	satisfy	the	requirements	below:		
à The	schema	is	in	6NF,	ensuring	historical	independence	of	each	attribute	and	query	performance	[20].	
à The	set	of	constraints	is	complete	regarding	data	consistency	(as	defined	in	2.6).	
à All	 relations	are	historicized	either	by	valid	and	 transaction	 timeline	 (for	 the	K	and	 the	B	 sets)	or	by	
transaction	timeline	only	(for	the	C	set).		

The	process	 itself	must	do	 this	 transformation	while	keeping	 the	 traceability	of	 the	 required	steps	and	 the	
initial	schema	conceptual	view.	

3.2 Schema	structure	
The	 historicization	 of	 a	 schema	 structure	 is	 obtained	 by	 iterative	 normalization	 of	 each	 of	 its	 relation	
according	 to	 its	 category.	 The	 objective	 is	 to	 address	 first	 the	 temporal	 volatility	 at	 the	 structure	 level	 by	
normalizing	relations	 into	6NF	ensuring	 that	 the	relation	represents	one	and	only	one	predicate.	Then,	 the	
remaining	temporal	volatility	and	temporal	integrity	are	addressed	by	adding	proper	constraints.		

3.2.1 Relational	decomposition	
The	normalization	process	uses	lossless	relational	decomposition.	Relational	decomposition	is	the	process	of	
decomposing	a	relation	into	smaller	relations	(“relparts”	for	short),	using	relational	operators	without	losing	
data.	Two	types	of	decomposition	are	used:	

à Projection-join	 decomposition	 (PJ):	 it	 consists	 of	 separating	 attributes	 into	 two	 or	 more	 relparts	
using	projection	operations	ensuring	that	the	recomposition	using	the	join	operation	(on	the	key)	leads	
to	a	lossless	decomposition.	PJ	decomposition	will	be	used	to	obtain	a	6FN	representation	of	each	initial	
relation.	

à Restriction-union	decomposition	(RU):	 it	consists	of	separating	tuples	into	two	relparts	regarding	a	
restriction	 condition	 ensuring	 that	 the	 recomposition	 using	 their	 union	 leads	 to	 a	 lossless	
decomposition.	

The	 historicization	 is	 performed	 on	 each	 relation	 in	 the	 initial	 schema.	 Given	 a	 relation	 R(K,	 A)	 to	 be	
historicized	into	a	bitemporal	relation	R!VT(K,	B,	C,	DV,	DT)	the	following	steps	are	required:	

1. Categorize	A	into	either	B	or	C	(see	section	2.4),	add	@V	and	bi@V	to	DV.	

2. Decompose	the	relation	into	the	6NF	using	PJ	decomposition,	so	that	K,	ai	and	bi	are	kept	with	their	
respective	timeline	attributes	as:	PJ({K,@V},	{K,	b1,	b1@V},	…,	{K,	bn,	bn@V},	{K,	c1},	…,	{K,	cn}).	

3. In	each	relpart	containing	a	bi	attribute,	rename	the	bi@V	as	@V4.	

4. Decompose	each	resulting	historicized	relpart	(obtained	in	2	and	3)	using	RU	decomposition	over	the	
timeline	attribute	to	separate	timeline	between	be-type	and	bx-type.	

5. Define	two	relparts	with	@Tbx	and	@Tbe	for	each	relpart	obtained	in	(4).	

																																								 																					
4	 This	step	is	for	convenience	purpose,	to	facilitate	constraint	definition	or	to	help	query	expressiveness	(especially	the	JOIN	is	
involved).	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
9	/	22	

	

Figure	3.	Historicization	steps	1	to	3.	

	

Figure	4.	Historicization	step	3	and	4	of	a1.	

Figure	3	and	4	illustrate	the	historicization.	Each	relpart	is	represented	as	a	rectangle.	The	gray	rectangle	(of	
Step	1)	 is	a	 initial	relation,	a	white	rectangle	represents	an	 intermediate	relpart,	and	the	blue	one	 is	a	 final	
relpart.	 A	 fully	 lined	 rectangle	 border	 is	 a	 base	 relation,	 and	 a	 dotted	 rectangle	 border	 is	 a	 view	 or	 an	
automatically	maintained	relation	(e.g.	through	a	trigger).	The	arrows	show	the	direction	of	the	process.	The	
rounded	corner	rectangle	shows	the	operation	involved.	

Figure	4	shows	the	steps	for	a1	attribute	only.	Step	4	must	be	applied	to	K	(R_K@V)	and	A	relparts	(R_b1@V,	…	
R_bn@V);	Step	5,	to	K,	B	and	C	(R_c1@N,	…,	R_cn@N)	relparts.	

3.2.2 Relational	grouping	
To	 facilitate	 constraint	 definition,	 these	 (numerous)	 relparts	 are	 conceptually	 grouped	 into	 three	 types	 of	
groupings:	

à The	K-grouping	of	a	relation	R	is	the	set	of	all	the	K	relparts.	A	K-relpart,	denoted	R_K,	is	a	relation	with	
K	and	the	associated	timeline	attributes	only.	

à A	 bi-grouping	 of	 a	 relation	 R	 is	 the	 set	 of	 all	 bi-relparts	 including	 bi-present-relparts	 R_bi_P	 and	 bi-
missing-relparts	R_bi_M.	Collectively,	the	bi-groupings	are	called	B-groupings.	

à A	ci-grouping	of	a	relation	R	is	the	set	of	all	ci-relparts	including	ci-present-relparts	R_ci_P	and	ci-missing-
relparts	R_ci_M.	Collectively,	the	ci-groupings	are	called	C-groupings.	

Step 3

Step 2

Step 1

K
b1
b1@V

R_b1@V

PJ

K
@V

R_K@V

K
@V
B
B@V
C

R!V

K
B
C

R’

K
c1

R_c1@N

RENAME
{b1@V as @V}

K
cn

R_cn@N… …
K
bn
bn@V

R_bn@V

K
b1
@V

R_b1@V …
K
bn
@V

R_bn@V

K
A

R

RENAME
{bn@V as @V}

Step 5

Step 4 for b1

K
b1
@Vbx

R_b1@Vbx
K
b1
@Vbe

R_b1@Vbe

K
b1
@V

R_b1@V

RU

EXTEND
@Tbx

K
b1
@Vbe
@Tbx

R_b1@VbeTbx

EXTEND
@Tbe

K
b1
@Vbe
@Tbe

R_b1@VbeTbe

EXTEND
@Tbx

K
b1
@Vbx
@Tbx

R_b1@VbxTbx

EXTEND
@Tbe

K
b1
@Vbx
@Tbe

R_b1@VbxTbe

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
10	/	22	

3.2.3 Relational	partition	
Relparts	are	conceptually	split	into	“partitions”	to	facilitate	constraint	definition	and	query	expressiveness.	A	
partition	 is	 defined	 regarding	 the	 relation	 category	 and	 timeline	 category.	 The	 figure	 below	 shows	 the	
hierarchy	 of	 potential	 relational	 partitions	 that	 can	 be	 found	 in	 a	 historical	 schema	 depending	 on	 the	
decomposition.	In	UBFH,	the	structure	and	the	constraints	are	defined	over	the	leaf	partitions	(in	blue).	

	

Figure	5.	Hierarchy	of	all	potential	relational	partitions.	

The	relpart	in	a	partition	category	S	of	a	g	grouping	is	denoted	R_g@S.	

Example.	The	historicization	of	PatientHS	into	a	valid-time	relation	generates	de	following	relparts:	
à Partition	N:	PatientHS_birth@N	(the	patient	identified	by	pNo	is	born	on	“birth”	date).	
à Partition	Vbx:	 PatientHS_K@Vbx	 (the	 patient	 identified	 by	 pNo	 from	@Vbx),	 PatientHS_hS@Vbx	 (the	
patient	identified	by	pNo	has	a	health	status	hS	from	@Vbx).	

à Partition	Vbe:	PatientHS_K@Vbe	(the	patient	 identified	by	pNo	during	@Vbe),	PatientHS_hS@Vbe	(the	
patient	identified	by	pNo	has	a	health	status	hS	during	@Vbe).	

	
à K-grouping:	PatientHS_K@Vbx	and	PatientHS_K@Vbe.	
à hS-grouping:	PatientHS_hS@Vbx	and	PatientHS_hS@Vbe.	
à birth-grouping:	PatientHS_birth@N.	

3.3 Constraints	
Keeping	history	may	introduce	data	inconsistency	as	described	in	section	2.6.	Even	if	a	relation	is	in	5NF	or	
6NF,	data	inconsistency	may	occur	within	the	relation	and	between	related	ones.	In	other	words,	a	constraint	
must	be	defined	for	each	relpart	according	to	its	partition	to	maintain	data	consistency.	Constraint	templates	
are	presented	and	can	be	automatically	adapted	to	generate	constraints	for	a	specified	relation.	

The	constraints	are	only	defined	on	V	partitions	because	they	can	be	modified	by	the	user.	There	is	no	need	to	
define	 constraints	 for	 T	 and	VT	 partitions	 because	 their	 value	 cannot	 be	modified	 by	 the	 user	 as	 they	 are	
managed	by	the	DBMS	using	any	of	the	following	solutions:	(a)	as	views	when	the	values	of	the	transaction	
timeline	 attribute	 are	obtained	by	 a	 function	 call	 to	 the	DBMS	 journal	 as	 in	DDLM	or	 (b)	 as	base	 relations	
(table)	 when	 the	 values	 of	 the	 transaction	 timeline	 attribute	 are	 set	 by	 the	 DBMS	 (as	 in	 SQL:2011	 with	
SYSTEM	 TIME),	 or	 by	 triggers	 (as	 in	 BCDM	 [21]).	 In	 UBHF,	 all	 solutions	 are	 supported	 if	 they	 satisfy	 the	
transaction	timeline	semantic.	

The	 following	 constraints	 must	 be	 defined	 regarding	 each	 relation	 of	 the	 initial	 schema.	 A	 constraint	 is	
defined	 with	 a	 unique	 identifier	 and	 a	 boolean	 expression.	 As	 a	 convention,	 the	 identifier	 starts	 with	 the	
relparts	 identifier	followed	by	the	constraint	name	and	the	boolean	expression	is	written	using	a	variant	of	
TutorialD.	

3.3.1 Candidate	keys	
For	non-historicized	relparts	and	historicized	relparts	with	bx-type	timeline,	the	key	constraint	is	the	same	as	
in	the	initial	relation.	More	specifically,	for	each	grouping	g,	and	each	partition	S	in	{N,	Vbx,	Tbx,	VbxTbx}	the	
key	constraint	of	R_g@S	is	defined	as:	

RELATION R_g@S (K, B, C, DV, DT)
 KEY {K};

Tbx Tbe

Partition

V T VT

Vbx Vbe VTbx VTbe

VbxTbx

VbxT VbeT

VbxTbeVbeTbx VbeTbe

N

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
11	/	22	

For	historicized	relparts	with	be-type	timeline,	the	key	constraint	must	be	applied	to	each	time	point	in	the	
period.	For	each	grouping	g,	and	each	partition	S	in	{Vbe,	VbeTbx}	the	key	constraint	of	R_g@S	is	defined	as:	

RELATION R_g@S (K, B, C, DV, DT)
 USING(@Vbe) : KEY {K, @Vbe};

For	each	grouping	g,	and	each	partition	S	in	{Tbe,	VbxTbe}	the	key	constraint	of	R_g@S	is	defined	as:	

RELATION R_g@S (K, B, C, DV, DT)
 USING(@Tbe) : KEY {K, @Tbe};

For	each	grouping	g,	and	each	partition	S	in	{VbeTbe}	the	key	constraint	of	R_g@S	is	defined	as:	

RELATION R_g@S (K, B, C, DV, DT)
 USING(@Vbe, @Tbe) : KEY {K, @Vbe, @Tbe};

3.3.2 Foreign	keys	
A	 foreign	 key	 is	 evaluated	 regarding	 related	 attributes	 in	 different	 relparts.	 In	 a	 historicized	 relation,	 the	
associated	timeline	attributes	must	be	considered	to	guarantee	that	their	related	values	are	asserted	at	 the	
same	time	(at	each	moment	of	the	unpacked	relation).	On	the	one	hand,	the	foreign	key	in	the	initial	schema	
must	be	maintained.	Let	Rs{X}→Rd	be	a	foreign	key	in	the	initial	schema	where	Rs	is	the	source	relation	with	
X	being	any	subset	of	attributes	of	Rs	equivalent	to	the	key	(K)	of	Rd,	the	destination	relation.	The	constraint	
guarantees	 temporal	 referential	 consistency	between	relparts	by	verifying	 that	 the	projection	of	Rs	on	X	 is	
included	in	the	projection	of	Rd	on	K	(with	suitable	renaming).	

To	 increase	 expressiveness,	 a	 shorthand	 operator,	 gSpace,	 is	 defined,	 extracting	 the	 history	 (if	 any)	 of	 a	
specified	grouping.	The	operation	returns	a	relation	equal	to	the	union	of	all	relparts	of	a	specific	grouping	g	
in	 {R_K,	 R_b1,…R_bn,	 R_c1,…,R_cn}	 with	 respect	 to	 the	 applicable	 partition5	 (@N	 or	 @V).	 The	 operation	 is	
defined	as:	

OPERATOR gSpace(g GROUPING) RETURNS RELATION;
 IF g is a C-grouping THEN
 R_g@N
 ELSE // K-grouping or B-grouping
 WITH (
 r_bx :=
 (EXTEND R_g@Vbx : {@V:=[@Vbx:ω]})
 {ALL BUT @Vbx}),
 r_be :=
 R_g@Vbe RENAME {@Vbe AS @V}
): USING (@V): r_bx UNION r_be
 END IF
END OPERATOR	

In	the	foreign	key	case,	note	two	potential	issues:		
à Each xi ∈X can be used in different relparts and may belong to K, B or C, so we need the union of the

different relparts xi belongs to by using gSpace(R_xi). 	
à xi	 may	 belong	 to	 C,	 so	 we	 need	 to	 verify	 that	 xi	 exists	 only	 at	 every	 time	 point	 of	 gSpace(Rd_K).	
According	 to	 the	 denseness	 constraint	 (described	 in	 the	 next	 section)	 xi	 exists	 at	 all	 time	 points	 of	
gSpace(Rs_K).	

Using	 gSpace,	 another	 shorthand	 operator,	 gUnpack,	 is	 defined,	 extracting	 the	 unpacked	 history	 of	 an	
attribute	x	of	a	specified	relation	R:	

																																								 																					
5	gSpace	can	be	also	defined	to	deal	with	@T	and	@VT	partition.	In	the	scope	of	this	paper	only	@N	and	@V	are	illustrated.	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
12	/	22	

OPERATOR gUnpack(R RelationName, x AttributeName)
RETURNS RELATION;
 IF (x in K of R) THEN
 UNPACK (@V) : (gSpace(R_K){x,@V})
 ELSIF (x in B of R) THEN
 UNPACK (@V) : (gSpace(R_x){x,@V})
 ELSE //(x in C of R)
 UNPACK (@V) : gSpace(R_x){x} JOIN gSpace(R_K)
 END IF
END OPERATOR	

Each	foreign	key	Rs{X}→Rd	in	the	initial	schema	is	defined	as:		

CONSTRAINT Rs_Rd_@V_fk
 gUnpack(Rs, x1) RENAME {x1 AS k1} ⊆
 gUnpack(Rd_K, k1)
 AND … AND
 gUnpack(Rs, xn) RENAME {xn AS kn} ⊆
 gUnpack(Rd_K, kn);

3.3.3 Temporal	denseness	
The	 temporal	 denseness	 is	 defined	 over	 all	 relparts	 of	 a	 relation.	 It	 ensures	 the	 history	 completeness	
(continuity)	 between	 historicized	 relparts	 of	 the	 K-grouping,	 B-groupings	 and	 C-groupings	 (if	 applicable).	
This	constraint	is	inspired	by	the	requirements	3	and	6	in	[10]	(chap.14).		

For	each	bi	∈	B	the	constraint	must	verify	the	relation	equality	between	relparts	of	the	K-grouping	and	a	bi-
grouping.	The	temporal	denseness	constraint	is	defined	as	follows:		

CONSTRAINT R_k_R_bi_denseness USING(@V) :
 gSpace(R_K) =	gSpace(R_ai){K, @V};

For	each	ci	∈	C	the	constraint	must	verify	the	relation	equality	between	relparts	of	the	K-grouping	and	a	ci-
grouping.	The	temporal	denseness	constraint	is	defined	as	follows:		

CONSTRAINT R_k_R_ci_denseness
 gSpace(R_K){K} = gSpace(R_ci){K};

3.3.4 Key	history	uniqueness	
The	 key	 history	 uniqueness	 is	 defined	 over	 the	 value	 of	 the	 timeline	 associated	 with	 K.	 It	 ensures	 non-
redundancy	 and	 non-contradiction	 of	 the	 key	 attributes	 values	 over	 time.	 In	 other	 words,	 it	 ensures	
consistency	 of	 the	 history	 of	 a	 tuple	 by	 verifying	 that	 the	 same	 proposition	 is	 represented	 once.	 This	
constraint	is	similar	to	requirements	1	in	[10]	(chap.14).	

CONSTRAINT R_key_uniqueness IS_EMPTY
 (R_K@Vbx JOIN R_K@Vbe WHERE @Vbx < POST(@Vbe));

3.3.5 Attribute	history	uniqueness	
The	 attribute	 history	 uniqueness	 is	 defined	 over	 the	 value	 of	 the	 timeline	 attribute	 associated	 with	 a	 bi	
attribute.	It	ensures	non-redundancy	and	non-contradiction	of	bi	values	over	time.	In	other	words,	it	ensures	
that	 the	 same	 value	 of	 ai	 appears	 only	 once	 for	 a	 specific	 period	 and	 that	 different	 value	 of	 bi	 appears	 at	
different	 period.	 This	 constraint	 is	 similar	 to	 requirement	 4	 in	 [10]	 (chap.14).	 For	 each	 bi,	 the	 constraint	
verifies	that	no	tuples	with	@Vbx	is	less	than	the	posterior	point	of	@Vbe	exists.	

CONSTRAINT R_bi_uniqueness IS_EMPTY
 (R_ai@Vbx{K, @Vbx} JOIN R_bi@Vbe{K, @Vbe}
 WHERE @Vbx < POST(@Vbe));

3.3.6 Key	history	non-circumlocution	
The	 key	 history	 non-circumlocution	 is	 defined	 over	 the	 value	 of	 the	 timeline	 attribute	 associated	 to	 K.	 It	
ensures	non-circumlocution	of	the	key	attributes	values	over	time.	This	constraint	is	similar	to	requirements	
2	in	[10]	(chap.14).	The	constraint	verifies	that	no	tuples	with	@Vbx	is	equal	to	the	posterior	point	of	@Vbe	
exists.	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
13	/	22	

CONSTRAINT R_key_circumlocution IS_EMPTY
 (R_K@Vbx JOIN R_K@Vbe WHERE @Vbx = POST(@Vbe));

The	two	key	history	constraints	(uniqueness	and	non-circumlocution)	may	be	combined	in	one:	

CONSTRAINT R_key_history IS_EMPTY
 (R_K@Vbx JOIN R_K@Vbe WHERE @Vbx ≤ POST(@Vbe));

3.3.7 Attribute	history	non-circumlocution	
The	attribute	history	non-circumlocution	is	defined	over	the	value	of	the	timeline	attribute	associated	to	an	ai	
attribute.	It	ensures	non-circumlocution	of	ai	values	over	time.	This	constraint	is	similar	to	requirement	5	in	
[10]	 (chap.14).	 For	 each	 ai	 the	 constraint	 verifies	 that	 no	 tuple	with	@Vbx	 equal	 to	 the	 posterior	 point	 of	
@Vbe	exists.	

CONSTRAINT R_ai_circumlocution IS_EMPTY
 ((R_ai@Vbx{K, ai, @Vbx}
 JOIN R_ai@Vbe{K, ai, @Vbe})
 WHERE @Vbx = POST(@Vbe));

4 Modification	
Many	modification	operators	can	be	derived	from	the	basic	relational	assignment	expression.	The	variety	of	
propositions	 is	even	greater	when	comes	the	time	to	define	new	ones	addressing	timelines.	[13,	18,	21,	14,	
10].	 The	 operators	 proposed	 in	 this	 paper	 have	 the	 distinct	 advantage	 to	 be	 expressed	 with	 respect	 to	
relations	as	defined	before	the	historicization	along	one	timeline	parameter.	

Since	 the	@T	 timeline	 is	 handled	 by	 the	 DBMS,	 the	 operations	 are	 defined	 over	 the	@V	 timeline	 only	 (if	
applicable).	The	modification	process	is	done	in	two	steps:	

à Initial	modification	(insertI,	deleteI)	address	the	denseness	property	by	distributing	the	attribute	values	
at	their	corresponding	relpart	groupings.	

à Grouping	modification	 (insertG,	 deleteG)	 address	 the	 non-circumlocution	 property	 by	 modifying	 the	
grouping	partitions	according	to	the	timeline	values.	

The	update	operators	will	be	defined,	using	the	following	equivalence	(AL	being	an	attribute	assignment	list):	

UPDATE R WHERE cond : { AL } ≣
 BEGIN
 DELETE R (R WHERE cond),
 INSERT R (EXTEND (R WHERE cond) : { AL })
 END

For	each	relparts	modification	two	operators	depending	on	the	timeline	category	are	defined	as:	
à Assert	a	proposition	(tuple)	since	a	given	time	point	vbx.	
à Assert	a	proposition	(tuple)	during	a	given	period	vbe.	

4.1 Insertion	
Inserting	 tuples	 from	 a	 5NF	 relation	 into	 the	 6FN	 relparts	 is	 done	 by	 «	distributing	»	 insertion	 of	 each	
attribute	 in	 the	 appropriate	 grouping,	 so	 denseness	 is	 maintained.	 For	 K	 and	 B-groupings,	 this	 is	 done	
through	 insertG	 statement	 defined	 afterwards.	 For	 C-groupings,	 a	 “standard”	 INSERT	 suffice.	 Note	 that,	
proposed	operators	address	the	single	tuple	insertion,	extension	to	relations	is	straightforward.	

The	insertI	operator	since	vbx	is	defined	as:	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
14	/	22	

OPERATOR insertI
 (T TUPLE SAME_HEADING_AS R, TIMEPOINT vbx)
 UPDATES RELPARTS_OF (R);
POSSIBLE SYNTAX ‘insertI’ R T ‘SINCE’ vbx;
 insertG R_K (EXTEND T{K} : {@Vbx := vbx}),
 insertG R_b1 (EXTEND T{K,b1} : {@Vbx := vbx}),
 …
 insertG R_bn (EXTEND T{K,bn} : {@Vbx := vbx}),
 INSERT R_c1@N T{K,c1},
 …
 INSERT R_cn@N T{K,cn}
END OPERATOR

The	insertI	operator	during	vbe	is	defined	as:	

OPERATOR insertI
 (T TUPLE SAME_HEADING_AS R, PERIOD vbe)
 UPDATES RELPARTS_OF (R);
POSSIBLE SYNTAX ‘insertI’ R T ‘DURING’ vbe;
 insertG R_K (EXTEND T{K} : {@Vbe := vbe}),
 insertG R_b1 (EXTEND T{K,b1} : {@Vbe := vbe}),
 …
 insertG R_bn (EXTEND T{K,bn} : {@Vbe := vbe}),
 INSERT R_b1@N T{K,c1},
 …
 INSERT R_bn@N T{K,cn}
END OPERATOR

The	insertG	operators	are	defined	to	manage	the	circumlocution	that	may	occur	inside	the	@Vbe	relpart	or	
between	the	@Vbx	relpart	and	the	@Vbe	relpart.	A	special	case	arises	when	two	periods	meet:	the	possible	
circumlocution	depends	on	the	non-key	attribute	(if	any)	having	the	same	value	in	both	tuples	or	not.	This	is	
managed	 by	 the	 join	 operator	 used	 to	 calculate	 the	 t1	 temporary	 relation	 variable	 in	 the	 following	 code.	
Previous	constraints	guarantee	that	t1	contains	at	most	one	tuple	and	take	care	of	non-redundancy	and	non-
contradiction	(in	a	similar	way	a	standard	insert	will	cope	with	a	duplicate	key	insert)	:	

OPERATOR insertG (T TUPLE SAME_HEADING_AS R_g@Vbx)
 UPDATES R_g;
POSSIBLE SYNTAX ‘insertG’ R_g T;
 WITH (t1 := (R_g@Vbe JOIN RELATION{T})
 WHERE (END(@Vbe)=PRIOR(@Vbx))) :
 IF IS_EMPTY(t1) THEN
 INSERT R_g@Vbx T
 ELSE
 DELETE R_g@Vbe (t1 {ALL BUT @Vbx}),
 INSERT R_g@Vbx
 (EXTEND T : {@Vbx := MIN(t1, BEGIN(@Vbe))
 END IF
END OPERATOR

For	the	during	@Vbe	version,	a	t2	temporary	relation	variable	is	needed	to	test	the	case	when	the	inserted	
tuple	is	fitting	exactly	between	the	@Vbx	relpart	and	the	@Vbe	relpart.	

OPERATOR insertG (T TUPLE SAME_HEADING_AS R_g@Vbe)
 UPDATES R_g;
POSSIBLE SYNTAX ‘insertG’ R_g T;
 WITH (
 t1 := (R_g@Vbx JOIN RELATION{T})
 WHERE (END(@Vbe)=PRIOR(@Vbx))) :
 IF IS_EMPTY(t1) THEN
 USING (@Vbe) : INSERT R_g@Vbe T
 ELSE
 WITH (
 t2 := R_g@Vbe WHERE (@Vbe MEETS T{@Vbe}),
 t3 := t1{ALL BUT @Vbx} UNION t2) :
 BEGIN
 DELETE R_g@Vbe t2,
 INSERT R_g@Vbx
 (EXTEND t1{ALL BUT @Vbe} :
 {@Vbx := MIN(t3, BEGIN(@Vbe))})
 END
 END IF
END OPERATOR

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
15	/	22	

4.2 Deletion	
The	delete	operation	is	defined	as	the	inserting	operation.	The	delete	operators	(deleteI	since	vbx	and	deleteI	
during	 vbe)	 are	 the	 direct	 transposition	 of	 the	 corresponding	 insertI	 operators.	 Still	 the	 groupings	 delete	
operators	 must	 be	 defined.	 The	 delete	 operation	 removes	 tuples	 having	 a	 specific	 value	 for	 specific	 time	
points.	A	special	case	arises	when	vbx	(of	the	new	tuple)	is	higher	than	the	@Vbx	of	the	existing	tuple,	all	the	
prior	period	must	be	conserved	to	maintain	the	denseness.	Note	that,	proposed	operators	address	the	single	
tuple	deletion,	extension	to	relations	is	straightforward.	

The	deleteG	since	vbx	operator	is	defined	as:	

OPERATOR deleteG (T TUPLE SAME_HEADING_AS R_g@Vbx)
 UPDATES R_g;
POSSIBLE SYNTAX ‘deleteG’ R_g T;
 WITH (t1 := (R_g@Vbx JOIN
 RELATION{T{ALL BUT @Vbx}}) :
 BEGIN
 DELETE R_g@Vbx t1,
 IF IS_EMPTY (t1 WHERE T{@Vbx} > @Vbx)) THEN
 USING (@Vbe) :
 DELETE R_g@Vbe
 (((R_g@Vbe JOIN RELATION{T})
 WHERE @Vbx ∈ @Vbe)
 {ALL BUT @Vbx})
 ELSE
 USING (@Vbe) :
 INSERT R_g@Vbe
 EXTEND t1 :{@Vbe:=[@Vbx:PRIOR(T{@Vbx})]}
 {ALL BUT @Vbx}
 END IF
 END
END OPERATOR

The	deleteG	during	vbe	operator	is	defined	as:	

OPERATOR deleteG (T TUPLE SAME_HEADING_AS R_g@Vbe)
 UPDATES R_g;
POSSIBLE SYNTAX ‘deleteG’ R_g T;
 WITH (t1 := (R_g@Vbx JOIN
 RELATION{T{ALL BUT @Vbe}}) :
 BEGIN
 DELETE R_g@Vbx t1,
 IF IS_EMPTY(t1 WHERE BEGIN(T{@Vbe})>@Vbx))
 THEN
 USING (@Vbe) :
 DELETE R_g@Vbe (R_g@Vbe JOIN RELATION{T})
 ELSE
 USING (@Vbe) :
 INSERT R_g@Vbe EXTEND t1 :
 {@Vbe := [@Vbx:PRE(T{@Vbe})]}
 {ALL BUT @Vbx}
 END IF
 END
END OPERATOR

4.3 Update	
The	 update	 operations	 differ	 a	 lot	 depending	 on	 the	 context	 of	 the	 application.	 Nevertheless,	 the	 basic	
principle	of	an	update	is	to	replace	old	tuples	with	new	ones.	

The	updateI	since	vbx	operator	is	defined	as:	

OPERATOR updateI
 (c BoolExp, AL AssignList, TIMEPOINT vbx)
 UPDATES RELPARTS_OF (R);
POSSIBLE SYNTAX ‘updateI’ R WHERE c ‘SINCE’ vbx;
 WITH (S := R WHERE cond) :
 deleteI R S SINCE vbx,
 insertI R (EXTEND S : { AL }) SINCE vbx
 END
END OPERATOR

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
16	/	22	

The	updateI	during	vbe	operator	is	defined	as:	

OPERATOR updateI
 (c BoolExp, AL AssignList, PERIOD vbe)
 UPDATES RELPARTS_OF (R);
POSSIBLE SYNTAX ‘updateI’ R WHERE c ‘DURING’ vbe;
 WITH (S := R WHERE cond) :
 DELETE R S DURING vbe,
 INSERT R (EXTEND S : { AL }) DURING vbe
 END
END OPERATOR

5 Coping	with	missing	information	
The	objective	of	this	section	is	to	show	that	the	UBHF	can	be	used	with	minimum	effort	in	presence	of	missing	
information.	

The	ideas	of	McGoveran	[11]	and	Darwen	[9]	(chap.	23)	can	easily	be	used	in	UBHF.	They	suggest	normalizing	
all	relations	 into	6NF	to	keep	track	of	missing	 information	at	the	attribute	 level.	Then,	each	relation	is	split	
into	 two	 or	 more	 parts	 to	 represent	 the	 following	 cases:	 known	 information,	 unknown	 information,	 not	
applicable	information,	etc.	

McGoveran	and	Darwen	approach	may	be	simplified	by	the	relational	grouping	concept	defined	in	UBHF.	The	
process	consists	of	creating	for	each	relpart	in	B-groupings	and	C-groupings	(ai	in	B	and	C)	two	relparts	(or	
more	relparts,	depending	on	the	number	of	“missing	information	cases”):	

à R_aiP:	a	relpart	containing	K	and	the	attribute	ai	when	the	attribute	value	is	present;	
à R_aiM:	a	relpart	containing	only	K	of	the	tuple	when	the	attribute	value	is	missing.	

Constraints	are	then	added	to	maintain	denseness	and	to	avoid	contradictions	as	follows.	

For	a	Vbx	partition,	the	constraint	is:		

CONSTRAINT R_bi@Vbx_MPinavriant
 R_K@Vbx = (R_biP@Vbx{K,@Vbx} D_UNION R_biM@Vbx)

For	a	Vbe	partition,	the	constraint	is:		

CONSTRAINT R_bi@Vbe_MPinavriant USING (@Vbe) :
 R_K@Vbe = (R_biP@Vbe{K,@Vbe} D_UNION R_biM@Vbe)

For	a	N	partition,	the	constraint	is:		

CONSTRAINT R_ci_MPinavriant
 R_K@N = (R_ciP@N{K} D_UNION R_ciM@N)

This	“MP”	decomposition	can	be	done	before	or	after	the	historicization.	In	the	“before”	approach	the	initial	
relation	in	5NF	is	normalized	to	6NF	than	for	each	bi-relparts	and	ci-relparts	where	missing	information	can	
occur	 MP	 decomposition	 are	 applied.	 Finally,	 the	 resulted	 relparts	 are	 historicized	 regarding	 the	 process	
described	 in	 section	 3.	 The	 main	 advantage	 of	 the	 “before”	 approach	 is	 that	 the	 constraints	 described	 in	
section	3.3	stay	unchanged.	The	“after”	approach	applies	to	the	MP	decomposition	for	each	bi-relparts	or	ci-
relparts	in	the	leaf	partition.	The	gSpace	can	then	be	extended	to	take	P-relparts	and	M-relpart	into	account	
so	 the	 new	 constraints	 maybe	 “merged”	 in	 the	 original	 ones.	 At	 the	 end	 picking	 either	 of	 these	 two	
approaches	result	in	similar	leaves	relparts.	The	figure	below	illustrates	the	example	of	extending	the	relparts	
of	a	Vbx	partition.	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
17	/	22	

	

Figure	6.	Coping	with	missing	information	in	Vbx	partition	

More	 work	 is	 required	 to	 delineate	 and	 define	 good	 modification	 operations	 in	 the	 context	 of	 missing	
information.	

6 Models	as	UBHF	views	
In	this	section,	we	demonstrate	the	integration	and	generalization	of	BCDM	and	DDLM	as	views	over	UBHM,	a	
model	defined	using	UBHF.	Thus,	there	is	no	need	to	redefine	the	constraints.	The	view	definition	algorithms	
are	described	below	and	an	example	is	presented	in	section	8.1.	

6.1 UBHM	as	a	UBHF	view	
A	unified	bitemporal	historical	model	is	defined	by	retaining	all	the	leaves	of	UBHF.	The	view	definition	of	the	
model	 is	 then	a	simple	one	 to	one	correspondence	with	 them.	UBFM	 is	useful	 in	many	circumstance	as	we	
discuss	in	section	5.	

6.2 BCDM	a	UBHM	view	
BCDM	defines	a	bitemporal	model.	The	bitemporal	 relations	are	explicitly	 stored	 in	 the	 schema	and	are	PJ	
decomposed	and	RU	decomposed	regarding	 the	value	of	 the	 transaction	timeline	attribute.	The	 transaction	
timeline	is	managed	by	user-defined	triggers.	According	to	UBHF	semantics	for	each	relation	R,	BCDM	schema	
contains	the	following	views:	

à union	of	VbxTbx	and	VbeTbx	for	each	K	and	each	bi;	
à union	of	VbxTbe	and	VbeTbe	for	each	K	and	each	bi;	
à a	Tbx	and	a	Tbe	for	each	ci.	

GENRATE BCDM SCHEMA AS A VIEW
for all R = (K, B, C, Dv, Dt) in {the initial schema}
 for all relparts X of R in {R_K and B-groupings (R_bi) }
 DEFINE VIEW BCDM6.X@VTbx AS
 UBHF. X@VbxTbx EXTEND : (@V := INTERVAL[@Vbx:ω])
 {ALL BUT @Vbx};
 UNION
 UBHF.X@VbeTbx RENAME (@Vbe as @V)
 DEFINE VIEW BCDM6.X@VTbe AS
 UBHF.X@VbxTbe EXTEND : (@V := [@Vbx:ω])
 {ALL BUT @Vbx};
 UNION
 UBHF.X@VbeTbe RENAME (@Vbe as @V)
 end for;
 for all relparts Z of R in {C-groupings (R_ci)}
 DEFINE VIEW BCDM6.Z@Tbx AS UBHF.Z@Tbx
 DEFINE VIEW BCDM6.Z@Tbe AS UBHF.Z@Tbe
 end for
end for

K
@Vbx
b1
b1@Vbx
…
bn
bn@Vbx

R@Vbx

J

K
@Vbx

R_K@Vbx

K
@Vbx
b1
b1@Vbx

R_b1@Vbx

U
MP

K
@Vbx

R_biM@Vbx

K
@Vbx
b1
b1@Vbx

R_biP@Vbx

…

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
18	/	22	

6.3 Bitemporal	DDLM	as	a	UBHM	view	
DDLM	defines	a	unitemporal	model	called	full-temporal	model	and	its	bitemporal	extension.	The	unitemporal	
part	contains	valid-time	relations	RU	decomposed	regarding	the	value	of	the	valid	timeline	attribute:	@Vbx	
(SINCE	 relation)	 and	 @Vbe	 (DURING	 relation).	 Only,	 the	 Vbe	 partition	 is	 PJ	 decomposed	 over	 K,	 and	 ai-
attributes,	The	bitemporal	part	 extended	 the	unitemporal	part	by	generating	 for	 each	 relation	a	view	with	
known	transaction	timeline	period	(@Tbe)	extracted	from	the	DBMS	journal.	According	to	UBHF	semantics	
for	each	relation	R,	DDLM	schema	contains	the	following	views:	

à Vbx	(SINCE):	join	of	K	and	B-groupings	of	Vbx	partition;	
à Vbe	(DURING):	one	for	K	and	one	for	each	ai-attribute	over	the	Vbe	partition;	
à VbxTbe	and	VbeTbe;	
à Tbe:	one	for	each	ci.	

Note.	DDLM	does	not	explicitly	mention	how	to	cope	with	bi-attributes.	The	bi-relparts	of	the	schema	view	is	
then,	strictly	speaking,	an	extension	to	the	bitemporal	DDLM.	

GENRATE BITEMPORAL DDLM SCHEMA AS A VIEW

for all R = (K, B, C, Dv, Dt) in {the initial Schema}
 //Key relparts views
 DEFINE VIEW DDLM.R_SINCE AS
 (UBHF.R_K@Vbx RENAME {@Vbx AS since})
 JOIN
 (UBHF.R_a1@Vbx RENAME {@Vbx AS b1_since})
 JOIN ... JOIN
 (UBHF.R_an@Vbx RENAME {@Vbx AS bn_since});
 DEFINE VIEW DDLM.R_SINCE_LOG AS
 UBHF.R_K@VbxTbx RENAME {@Vbx AS since} EXTEND:
 (since_log:= INTERVAL[@Tbx:now()]) {ALL BUT @Tbx}
 UNION
 UBHF.R_K@VbxTbe
 RENAME {@Vbx AS since, @Tbe AS since_log};
 DEFINE VIEW DDLM.R_DURING AS
 UBHF.R_K@Vbe RENAME {@Vbe AS during};
 DEFINE VIEW DDLM.R_DURING_LOG AS
 UBHF.R_K@VbeTbx RENAME {@Vbe AS during} EXTEND:
 (since_log:= [@Tbx:now()]) {ALL BUT @Tbx}
 UNION
 UBHF.R_K@VbeTbe
 RENAME {@Vbe AS during, @Tbe AS during_log};
 //A relpart views
 for bi in B
 DEFINE VIEW DDLM6.R_bi_DURING AS
 UBHF.R_bi@Vbe RENAME {@Vbe AS during};
 DEFINE VIEW DDLM6.R_bi_DURING_LOG AS
 UBHF.R_bi@VbeTbx RENAME {@Vbe AS during} EXTEND:
 (since_log:= [@Tbx:now()]) {ALL BUT @Tbx}
 UNION
 UBHF.R_bi@VbeTbe
 RENAME {@Vbe AS during, @Tbe AS during_log};
 end for;
//B relpart views (transaction only)
 for ci in C
 DEFINE VIEW DDLM6.R_ci_LOG AS
 UBHF.R_ci@Tbx EXTEND:
 (during_log:= [@Tbx:now()])
 {ALL BUT @Tbx}
 UNION
 UBHF.R_ci@Tbe RENAME {@Tbe AS during_log}
 end for
end for;

7 Discussion	
Many	not	so	evident	properties	of	BCDM	and	DDLM	becomes	apparent	when	UBHF	is	used	to	express	them.	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
19	/	22	

7.1 BCDM	and	DDLM	comparison	

7.1.1 Structure	
The	partition	 categorization	 shows	 that	 the	 structure	 of	DDLM	and	BCDM	differ.	 For	 a	 valid-time	 relation,	
DDLM	separate	the	relation	into	tow	relparts	Vbx	and	Vbe,	BCDM	does	not.	For	a	transaction-time	relation,	
DDLM	does	not	mention	specific	treatment,	BCDM	separates	the	relation	into	tow	relparts	Tbx	and	Tbe.	For	a	
bitemporal	relation,	DDLM	separates	the	relation	into	two	layers:	a	valid	unitemporal	one	(with	Vbx	and	Vbe)	
and	a	bitemporal	one	(with	Tbe);	BCDM	defines	only	a	bitemporal	layer	with	VTbx	and	VTbe.	Figure	7	shows	
the	partitions	used	in	each	model.		

	

Figure	7.	Partitions	composing	UBHM,	DDLM	and	BCDM	

The	 difference	 is	 the	 consequence	 of	 the	 decomposition	 sequence	 and	 conditions	 defined	 through	 the	
historicization.	In	DDLM	the	RU	decomposition	is	over	the	valid	timeline	and	in	BCDM	it	is	over	transaction	
timeline.	 However,	 the	 two	 models	 contain	 the	 same	 data	 but	 are	 represented	 differently.	 Furthermore,	
notice	that	the	two	models	are	complementary	by	offering	data	access	at	different	timeline	level.	DDLM	put	
the	 emphasis	 on	 the	 fact	 validity,	 and	 BCDM	 on	 the	 fact	 correction.	 Despite	 this,	 the	 two	 models	 are	
interoperable,	and	can	be	easily	derived	from	each	other	without	losing	data.		

7.1.2 Constraints	
DDLM	set	the	semantic	of	both	the	valid	and	the	transaction	timelines.	It	 is	then	possible	to	(pre)define	the	
appropriate	constraints.	On	the	other	hand,	in	BCDM,	valid	timeline	depends	on	the	application	domain.	The	
constraints	definition	in	DDLM	is	more	straightforward	because	of	its	uniform	definition	and	the	separation	
between	known	and	unknown	 timeline	attributes	values.	The	BCDM	constraints	 are	harder	 to	define	 since	
they	must	cope	simultaneously	with	validation	semantic	and	domain	semantic.		

7.2 	BCDM	and	DDLM	usage	
DDLM	 presents	 a	 standard	 process	 to	 historicized	 uniquely	 each	 relation,	 BCDM	 presents	 a	 process	
depending	 on	 the	 application	 domain	 by	 choosing	 the	 temporal	 category	 of	 each	 relation	 at	 the	 entity-
relationship	 level.	However,	with	UBHF,	 the	 two	processes	 can	be	 standardized	and	used	 jointly,	using	 the	
views	 presented	 in	 section	 4.	 Designing	 a	 data	warehouse	 using	UBHM	 enables	 the	 integration	 of	 sources	
structured	with	either	model,	and	making	them	interoperable.	The	separation	between	the	Vbx	relparts	and	
the	Vbe	relparts	in	DDLM	is	well	suited	for	transactional	operations	and	for	analytic	operations	respectively.	
The	 separation	 between	 the	 Tbx	 relparts	 and	 the	 Tbe	 relparts	 in	 BCDM	 also	 gives	 more	 expressivity	 to	
transactional	operations.	These	parts	can	physically	be	organized	and	optimized	along	this	separation.	

Defining	both	BCDM	and	DDLM	in	terms	of	UBFM	views	allows	automatic	integration	of	the	two	models,	so	
the	definition	domain	constraints	are	clearly	distinct	from	the	domain	ones	and	specifying	is	made	easier.	

7.3 Limitations	
With	 UBHF,	 a	 sound	 temporal	 schema	 can	 be	 designed	 ensuring	 a	 unified	 data	 integrity	 semantic,	 query	
expressiveness	 and	 guided	 automation.	 Currently	 proposed	 methods	 define	 transformation	 rules	 “by-
example”	 and	 must	 largely	 be	 tailored	 and	 applied	 manually.	 This	 paper	 presents	 a	 unified	 bitemporal	
framework	to	help	reach	guide	automation	for	designing	historicized	database	schema	reducing	errors	and	

Tbx Tbe

Partition

V T VT

Vbx Vbe VTbx VTbe

VbxTbx

VbxT VbeT

VbxTbeVbeTbx VbeTbe

N

UBHM
DDLM
BCDM DUU DUU

DU DU BU BU B

D

B

B

U

U

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
20	/	22	

costs.	More	 specifically,	 UBHF	defines	 (a)	 relation,	 attribute	 and	 timeline	 categorization	 to	 provide	 unique	
semantic;	 (b)	 unified	 temporal	 structure	 and	 general	 constraints	 to	 be	 independent	 of	 the	 domain	 (or	
context)	yet	providing	formal	definition	and	superior	automation	capabilities;	(c)	historicization	process	with	
traceability	over	the	transformation	steps	without	losing	the	initial	schema	conceptual	view,	including	some	
hints	 to	 cope	with	missing	 information;	 (d)	 UBHF	 views	 of	 DDLM	 and	 BCDM	with	 an	 extension	 to	model	
multi-relational	 historicization	 categories;	 and	 (e)	 basic	 modification	 operations.	 UBFM	 illustrates	 the	
capability	 of	 using	 UBHF	 to	 define	 new	 models.	 With	 UBHF	 the	 historicization	 is	 done	 with	 minimum	
intervention	of	the	database	designer.	Furthermore,	BCDM	and	DDLM	can	be	easily	automated	with	respect	
to	the	concepts	and	historicization	process	of	UBHF	as	shown	in	figure	8.	Furthermore,	our	proof	of	concept	
illustrates	that	it	can	be	applied	using	a	subset	of	standard	SQL	available	in	many	currently	available	DBMS.	
Finally,	the	proposed	framework	does	not	need	any	extension	to	the	relational	theory.	

7.4 Further	work	
Further	work	is	planned	to	produce	a	fully	operational	solution.	Here	is	a	short	list:		

à Define	 the	 full	 missing	 information	 approach	 (missing,	 no	 applicable),	 with	 convenient	 modification	
operators.	

à Support	past	indeterminacy	(xe)	in	a	similar	way	as	it	is	done	for	future	indeterminacy	(bx).	
à Support	temporal	uncertainty.	
à Support	other	timelines	(event	time,	decision	time,	etc.).	
à Define	an	optimized	SQL	implementation	of	UBHF	through	a	modified	TutorialD	to	SQL	translator.	
à Build	a	UBHF	engine	to	natively	execute	interval	logic	analysis	and	translate	it	into	SQL.	

8 Conclusion	
A	 sound	 temporal	 schema	 plays	 an	 essential	 role	 in	 increasing	 query	 expressiveness	 making	 easier	 for	
developers	 to	define	and	maintains	 their	algorithms.	 “On	 the	other	hand,	a	 theoretically	grounded	solution	
should	be	provided	once	and	for	all,	so	that	application	developers	can	safely	adopt	it,	and	just	focus	on	the	
application-dependent	aspects	of	their	problems”	[3].	This	work	is	a	starting	point	for	the	development	of	a	
temporal	database	modelling	tool	based	on	solid	models	and	already	existing	theoretical	solutions.	

9 References	
1.	 Allen,	J.F.:	Maintaining	Knowledge	About	Temporal	Intervals.	Commun	ACM.	26,	11,	832–843	(1983).	
2.	 Allen,	J.F.,	Ferguson,	G.:	Actions	and	Events	in	Interval	Temporal	Logic.	The	University	of	Rochester,	

Computer	Science	Department	(1994).	
3.	 Anselma,	L.,	Piovesan,	L.,	Terenziani,	P.:	A	1NF	temporal	relational	model	and	algebra	coping	with	valid-

time	temporal	indeterminacy.	J.	Intell.	Inf.	Syst.	1–30	(2015).	
4.	 Anselma,	L.,	Stantic,	B.,	Terenziani,	P.,	Sattar,	A.:	Querying	now-relative	data.	J.	Intell.	Inf.	Syst.	41,	2,	285–

311	(2013).	
5.	 Codd,	E.F.:	Extending	the	Database	Relational	Model	to	Capture	More	Meaning.	ACM	Trans	Database	Syst.	

4,	4,	397–434	(1979).	
6.	 Codd,	E.F.:	The	Relational	Model	for	Database	Management:	Version	2.	Addison-Wesley	Longman	

Publishing	Co.,	Inc.,	Boston,	MA,	USA	(1990).	
7.	 Combi,	C.,	Keravnou,	E.T.,	Shahar,	Y.:	Temporal	Information	Systems	in	Medicine.	Springer	(2010).	
8.	 Darwen,	H.,	Date,	C.J.:	The	Third	Manifesto.	SIGMOD	Rec.	24,	1,	39–49	(1995).	
9.	 Date,	C.J.,	Darwen,	H.:	Database	Explorations:	essays	on	the	Third	Manifesto	and	related	topics.	Trafford	

Publishing	(2010).	
10.	 Date,	C.J.,	Darwen,	H.,	Lorentzos,	N.A.:	Time	and	relational	theory:	temporal	databases	in	the	relational	

model	and	SQL.	Morgan	Kaufmann,	Waltham,	MA	(2014).	
11.	 Date,	C.J.,	Darwen,	H.,	McGoveran,	D.:	Nothing	from	Nothing	(part	4).	Relational	database	writings,	1994-

1997.	pp.	377–394	Addison-Wesley,	Harlow,	England ;	Reading,	Mass	(1998).	
12.	 Jensen,	C.S.,	Dyreson,	C.E.,	Bohlen,	M.,	Cliford,	J.,	Elmasri,	R.,	Gadia,	S.K.,	Grandi,	F.,	Hayes,	P.,	Jajodia,	S.,	

Kafer,	W.,	Kline,	N.,	Lorentzos,	N.,	Mitsopoulos,	Y.,	Montanari,	A.,	Nonen,	D.,	Peressi,	E.,	Pernici,	B.,	
Roddick,	J.F.,	Sarda,	N.L.,	Scalas,	M.R.,	Segev,	A.,	Snodgrass,	R.T.,	Soo,	M.D.,	Tansel,	A.,	Tiberio,	P.,	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
21	/	22	

Wiederhold,	G.:	The	consensus	glossary	of	temporal	database	concepts-February	1998	version.	
Proceedings	of	Seminar	Temporal	Databases:	Research	and	Practice,	23-27	June	1997.	pp.	367–405	
Springer-Verlag	(1998).	

13.	 Jensen,	C.S.,	Soo,	M.D.,	Snodgrass,	R.T.:	Unifying	Temporal	Data	Models	via	a	Conceptual	Model.	Inf.	Syst.	
19,	513–547	(1993).	

14.	 Johnston,	T.,	Weis,	R.:	Managing	time	in	relational	databases:	how	to	design,	update	and	query	temporal	
data.	Morgan	Kaufmann/Elsevier,	Amsterdam ;	Boston	(2010).	

15.	 Khnaisser,	C.,	Lavoie,	L.,	Diab,	H.,	Ethier,	J.-F.:	Data	Warehouse	Design	Methods	Review:	Trends,	
Challenges	and	Future	Directions	for	the	Healthcare	Domain.	In:	Morzy,	T.,	Valduriez,	P.,	and	Bellatreche,	
L.	(eds.)	New	Trends	in	Databases	and	Information	Systems.	pp.	76–87	Springer	International	Publishing	
(2015).	

16.	 Kline,	N.:	An	Update	of	the	Temporal	Database	Bibliography.	SIGMOD	Rec.	22,	4,	66–80	(1993).	
17.	 Lorentzos,	N.A.,	Johnson,	R.G.:	TRA:	A	Model	for	a	Temporal	Relational	Algebra.	In:	Rolland,	C.,	Bodart,	F.,	

and	Léonard,	M.	(eds.)	Temporal	Aspects	in	Information	Systems,	Proceedings	of	the	IFIP	TC	8/WG	8.1	
Working	Conference	on	Temporal	Aspects	in	Information	Systems,	Sophia-Antipolis,	France,	13-15	May,	
1987.	pp.	95–108	North-Holland	/	Elsevier	(1987).	

18.	 Lorentzos,	N.A.,	Poulovassilis,	A.,	Small,	C.:	Implementation	of	Update	Operations	for	Interval	Relations.	
Comput	J.	37,	3,	164–176	(1994).	

19.	 Meyden,	R.	van	der:	Logical	Approaches	to	Incomplete	Information:	A	Survey.	In:	Chomicki,	J.	and	Saake,	
G.	(eds.)	Logics	for	Databases	and	Information	Systems.	pp.	307–356	Springer	US	(1998).	

20.	 Rönnbäck,	L.,	Regardt,	O.,	Bergholtz,	M.,	Johannesson,	P.,	Wohed,	P.:	Anchor	modeling—Agile	information	
modeling	in	evolving	data	environments.	Data	Knowl.	Eng.	69,	12,	1229–1253	(2010).	

21.	 Snodgrass,	R.T.:	Developing	time-oriented	database	applications	in	SQL.	Morgan	Kaufmann	Publishers,	
San	Francisco,	California	(2000).	

22.	 Snodgrass,	R.T.:	The	TSQL2	Temporal	Query	Language.	Springer	(1995).	
	

RR0020A	:	Automated	bitemporal	database	schema	design	with	a	unified	framework,	020a	(2017-03-27)	–	<<réd>>	
22	/	22	

10 Appendix	
The	figure	below	illustrates	the	results	relparts	of	the	historicization	of	a	relation	R(K,	{b1,	…,	bn},	{c1,	…,	cm},)	
according	to	UBHF	and	the	generation	of	BCDM	and	bitemporal	DDLM	views.		

	

Figure	8.	Historicization	structure	of	DDLM,	BCDM	and	UBHM	in	terms	of	UBHF.	

	

	

Base BCDM citemporal schema viewUBHM citemporal schema Initial relation

K
b1
…
bn
c1
…
cm

R

 UBHF

K
@Vbe
@Tbe

R_K@VbeTbe
K
b1
@Vbe
@Tbe

R_b1@VbeTbe

K
@Vbx
@Tbe

R_K@VbxTbe
K
b1
@Vbx
@Tbe

R_b1@VbxTbe

K
@Vbe

R_K@Vbe
K
b1
@Vbe

R_b1@Vbe

K
@Vbx

R_K@Vbx
K
b1
@Vbx

R_b1@Vbx

Base DDLM citemporal schema view
 DDLM

K
since
b1
b1_since
a2
a2_since

R_SINCE
R@Vbx

K
K
since
b1
b1_since
a2
a2_since
since_log

R_SINCE_LOG
R@VbxTbe

K
during
during_log

R_DURING_LOG
R_K@VbeTbe

K
b1
during
during_log

b1_DURING_LOG
R_b1@VbeTbe

K
bn
during
during_log

bn_DURING_LOG
R_bn@VbeTbe

K
bn
@Vbe

R_bn@Vbe

K
bn
@Vbx

R_bn@Vbx

K
bn
@Vbe
@Tbe

R_bn@VbeTbe

K
bn
@Vbx
@Tbe

R_bn@VbxTbe

 BCDM

K
@Vbe
@Tbx

R_K@VbeTbx
K
b1
@Vbe
@Tbx

R_b1@VbeTbx

K
@Vbx
@Tbx

R_K@VbxTbx
K
b1
@Vbx
@Tbx

R_b1@VbxTbx

K
bn
@Vbe
@Tbx

R_bn@VbeTbx

K
bn
@Vbx
@Tbx

R_bn@VbxTbx

K
during

R_DURING
R_K@Vbe

K
b1
during

b1_DURING
R_b1@Vbe

K
bn
during

bn_DURING
R_bn@Vbe

K
@V
@Tbe

R_K@VTbe
K
b1
@V
@Tbe

R_b1@VTbe
K
bn
@V
@Tbe

R_bn@VTbe

K
@V
@Tbx

R_K@VTbx
K
b1
@V
@Tbx

R_b1@VTbx
K
bn
@Vbe
@Tbx

R_bn@VTbx

DDLM
schema

view

K
c1

R_c1@N
K
c1
@Tbe

R_c1@Tbe
K
c1
@Tbx

R_c1@Tbx

…

…

…

…

…

…

K
cm

R_cm@N
K
cm
@Tbe

R_cm@Tbe
K
cm
@Tbx

R_cm@Tbx

…… …

…

…

…

…

!

