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Abstract. We investigate how probabilities can be assigned to dispositions in 
ontologies, building on Popper’s propensity approach. We show that if D is a 
disposition universal associated with a trigger T and a realization R, and d is an 
instance of D, then one can assign a probability to the triplets (d,T,R) and (D,T,R). 
These probabilities measure the causal power of dispositions, which can be 
defined as limits of relative frequencies of possible instances of T triggering an 
instance of R over a hypothetical infinite random sequence of possible instances of 
T satisfying certain conditions. Adopting a fallibilist methodology, these 
probability values can be estimated by relative frequencies in actual finite 
sequences. 
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Introduction 

Probabilistic and statistical notions are ubiquitous in the medical domain. These 
include e.g. the prevalence of a disease in a population, the sensitivity or the specificity 
of a medical test, or the probability for a person to develop a disease in a given 
timeframe. It would therefore be valuable if ontologies aiming at representing 
adequately medical knowledge could formalize probabilistic notions. 

The OBO Foundry is to date one of the most significant attempts to build 
interoperable ontologies in the biomedical domain. In this context, the OGMS ontology 
[1] aims at supplying a general ontology for the medical domain. The question of how 
to represent probabilistic notions in this framework is still open. A first attempt on a 
related topic has been made by Röhl & Jansen [2], who analyze the non-probabilistic 
aspects of the notion of disposition. We will build on their work and combine it with 
Popper’s work [3] on propensity in order to investigate the probabilistic dimension of 
dispositions. In particular, we will try to determine to which kind of dispositional 
entities a probability can be assigned: to universals, to particulars, or to both? 
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1. Dispositions and propensities 

Before investigating how to formalize the concept of propensity in ontologies, let us 
first introduce our general ontological framework, and explain the propensity account 
in the field of philosophy of probability. 

1.1. Realizable entities and dispositions 

The OBO Foundry relies on the upper-level ontology Basic Formal Ontology (BFO), 
which aims at formalizing the most general concepts that domain ontologies should be 
based on. At the most general level, BFO recognizes two different types of entities. On 
one hand, there are occurrents, which are extended in time (all processes, e.g. a dinner 
or a movie screening, are occurrents). On the other hand, there are continuants, which 
are entirely present at every time they exist. These include independent continuants, 
which roughly correspond to what we would imagine as objects (e.g. the Earth, a bottle 
of wine, a molecule) or object aggregates (e.g. a flock of birds); and dependent 
continuants, which inhere in independent continuants (e.g. the greenness of a leaf, the 
shape of the Earth). Amongst dependent continuants, BFO makes a distinction between 
qualities on one hand, and realizable entities on the other hand. Qualities are entities 
that can be described as “categorical”, meaning that they are constantly realized. For 
example, at any instant, a ball has a color and a shape, therefore these dependent 
continuants are categorical properties and must be classified as qualities. By contrast, 
realizable entities have two different kinds of phases: actualization phase, during which 
they are realized through some processes; and dormancy phases, during which they still 
exist in their bearer but are not realized (cf. [4]). 

Dispositions belong to this family of realizable entities: a disposition borne by an 
object will lead to a given process (named here “realization”) when this object is 
introduced into certain specific circumstances (named here “trigger”). For example, 
according to OGMS, the disease “epilepsy” is a disposition whose realizations are 
epileptic seizures; even at times when he is not undergoing any epileptic seizure, an 
epileptic patient is still bearing an instance of such a disposition. Let us point that a 
disposition always has a categorical basis (cf. [5]) – that is, a set of categorical 
properties (qualities) underlying the disposition. For example, the categorical basis of 
the disease “epilepsy” is constituted by some anomalies in neural structures, which are 
going to lead to epileptic seizures when some trigger (e.g. a stressful episode, or a 
flashing light for photosensitive people) is happening. 

Finally, dispositions can be divided between sure-fire dispositions (dispositions 
whose triggering process lead systematically to a realization – for example the 
disposition for a windshield to break when it is hit by a 30 tons truck) and probabilistic 
dispositions (dispositions whose triggering process lead to a realization with some 
probability – for example the disposition for a fair coin to land on heads when it is 
tossed). We will investigate this second kind of dispositions in this paper. 

1.2. Probabilistic dispositions and interpretation of probabilities 

According to Röhl & Jansen [2], a disposition attribution has the following general 
structure: x has a disposition D for realization R with a trigger T with a probability p. 
Here, R is the realization process of the disposition; and T is its triggering process. 
Additionally, probability is for them simply a number between 0 and 1, and a 
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probability attribution is a function of the tuple <disposition, realization> to this 
interval. However, this definition leaves open two questions. First, it does not explain 
what it means to assign a probability to a disposition: how can we express, using only 
non-probabilistic concepts, the necessary and sufficient conditions for the assignment 
of a probability p to a disposition? This is a particular case of a classical problem in 
philosophy of probability, namely the task of interpreting probabilities. Several theories 
have been proposed in the past, including frequentist theories (proposed by Von Mises 
and Reichenbach), which interpret the probability of an event as the relative frequency 
of this event in a hypothetical infinite sequence of trials; logicist theories (by Keynes 
and Carnap), which see probabilities as degrees of entailment between two 
propositions; subjectivist theories (by Ramsey and De Finetti), for whom a probability 
is a degree of belief of a rational agent in a proposition; and finally propensity theories 
(by Popper), that will be detailed thereafter. The second question left open by this 
definition is the following: are the entities present in the tuple <disposition, realization> 
particulars or universals? As we will see, we will have to answer the first question in 
order to answer the second one. 

Of note, all interpretations of probability face important difficulties: see e.g. [6] 
and [7] for flaws in the frequentist interpretation, and see [8] for critics of the 
propensity theory. Moreover, Hansson [9] has pointed to the need of second-order 
probabilities, suggesting that a subjectivist interpretation of probability, though 
necessary, is likely to be not sufficient, and should be complemented with an 
objectivist interpretation of probability like a frequentist or propensity theory. Of these 
two theories, propensity theories appear to be more solid than frequentist ones (cf. [7], 
[10]). The underlying realist philosophy of BFO also naturally invites a propensity 
approach of probability; indeed, Röhl & Jansen’s work [2] on sure-fire dispositions can 
be extended to probabilistic dispositions along the lines of this propensity theory. So let 
us introduce briefly this propensity approach as it has been developed in the 
philosophical literature, before trying to adapt it to the framework of ontologies. 

1.3. Two analysis of propensity 

Popper [3] has proposed the following account of propensity (refined thereafter in 
particular by Mellor [11] and Williamson [12]): repeatable experimental conditions 
(named “test”) C are endowed with a disposition (named “propensity”) to produce 
infinite hypothetical sequences of events amongst which the limit of relative 
frequencies of an event E would be equal to the value of the probability of E given C. 
For example, according to this account, an experiment of coin tosses of a symmetrical 
coin is endowed with a propensity which is realized when a hypothetical infinite 
sequence of tosses happens, by leading to a relative frequency of results “heads” of ½.  

According to Popper’s account, probabilities are always conditional and there does 
not exist any probabilities simpliciter: it does not make sense to speak of the 
probability of E, one can only deal with the probability of E given C. This should not 
be seen as a weakness of Popper’s account: it may actually be a common feature shared 
with all other viable approaches of probability (see [13]). 

Let us call “propensity1” such a disposition. It is important to understand that the 
trigger of the propensity1 is not C, but an infinite repetition of experimental conditions 
C; and its realization is not E, but E happening with a given limit of relative 
frequencies. Also, one should note that according to this account, it is certain that the 
event E will happen with a given limit of relative frequency if C is repeated an infinite 
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number of times; therefore, the propensity1 is not a probabilistic disposition, but a sure-
fire disposition. 

However, this account can seem problematic. As a matter of fact, if all propensities 
would be realized only during hypothetical infinite sequences of tests, there would be 
no point in representing them in ontologies. Indeed, in real life, we are generally not 
interested in hypothetical infinite sequences of tests (such as an infinite hypothetical 
sequence of coin tosses), but in actual and finite sequences of tests (such as a finite 
sequence of coin tosses). 

This problem can however be easily overcome. As a matter of fact, like any 
dispositional property, propensity1 are associated with a categorical basis – that is, a set 
of categorical properties that underlie the disposition. For example, the propensity1 of a 
coin to fall on heads is associated with a categorical basis composed by some 
symmetry properties of the coin. But this categorical basis is also the bearer of another 
dispositional property that we will name here “propensity2”, whose trigger is not a 
hypothetical infinite sequence of repetitions of C (as it was for the propensity1), but a 
unique test C. In the coin toss example, the symmetry properties of the coin will have a 
causal influence not only during an infinite hypothetical sequence of tosses, but also 
during a unique coin toss. The latter causal influence reveals a disposition to fall on 
heads after a unique toss, which is a propensity2. This is not a sure-fire disposition, but 
a probabilistic disposition. As a historical note, Popper’s account of propensity actually 
evolved during his life from a propensity1 theory to a propensity2 theory – although he 
never properly differentiated these two interpretations, and occasionally switched 
between one and the other without mentioning it (cf. [10]). These two accounts should 
however not be seen as rivals, but as complementary. 

In a nutshell, we defend here the thesis that for every propensity1, there is an 
associated propensity2 (and vice versa) such that 1) a propensity1 and its associated 
propensity2 have the same categorical basis and 2) the trigger of a propensity1 
associated with C is an infinite sequence of repetitions of C, whereas the trigger of the 
propensity2 associated with C is a single instance of C. We will here be interested 
mainly in propensities2 rather than in propensities1, as they are the ones which are 
realized (repeatedly) in finite and actual sequences of tests that we normally encounter. 

Does it mean that propensities1 are of no use at all? This is not the case: we 
actually need them, because of some insufficiencies of the propensity2 account. As a 
matter of fact, propensity2 to an event E will have a causal influence (also named 
“causal power”) on the realization of this event when a test C happens; and it would be 
desirable to define probability as the intensity of this causal power. However, to our 
knowledge, there is currently no theory of causal powers giving a direct interpretation 
(using only non-probabilistic concepts) of such a probability by referring to only one 
test C (as expressed by Eagle [8]: “No account of partial causation has ever quantified 
the part-cause-of relation in the way that is required for probability.”). Still, we can 
define the probability of a propensity2 through the associated propensity1, in the 
following way. Let us write P2 a propensity2 for an event E and a test C; and let us 
consider P1 the associated propensity1 that will be realized with E happening with a 
limit of relative frequencies p over a hypothetical infinite sequence of repetitions of C. 
Then we can simply define the intensity of P2 as having this value p (see [11] for a 
related strategy). For example, according to this approach, a coin has a propensity2 of 
intensity ½ to fall on heads on a unique toss if and only if it will fall on heads with a 
relative frequency ½ in an infinite hypothetical sequence of tosses. Therefore, this 
value ½ characterizes not only the relative frequency in a hypothetical infinite 
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repetition of coin tosses, when the propensity1 is realized, but also the causal power of 
the propensity2 in a unique toss. 

This provides us with a first insight into the ontology of probabilistic dispositions. 
We now have to specify this account in the framework of the BFO ontology, by 
adapting the concept of propensity2 to this framework, and by introducing the 
distinction between universals and particulars. 

2. Ontologies and probabilistic dispositions 

We will use here the analysis of dispositions, bearer, trigger and realization proposed 
by Röhl & Jansen [2], which introduces the following relations between particulars: 
has_bearer relates a particular of disposition with its (particular) bearer; 
has_realization relates a (particular) disposition with its realization; has_triggerD, 
relates a disposition to its trigger; and has_triggerR relates a realization to its trigger. 
Röhl & Jansen also introduce the following relations between universals: has_bearer, 
has_realization, has_triggerD et has_triggerR (here we adopt the usual convention of 
writing in bold the relations for which one of the relata at least is a particular, and 
writing in italic the relations that relate only universals). 

Röhl & Jansen’s analysis is restricted to sure-fire dispositions. If the triggering 
process of a sure-fire disposition happens, then its realization process also happens: this 
is expressed by through Röhl & Jansen so-called “realization principle”. However, the 
triggering process of a probabilistic disposition can happen without its realization 
happening. Therefore, the realization principle is not verified for probabilistic 
dispositions. Neither is Röhl & Jansen’s following axiom: d has_triggerD t  

r (d has_realization r  r has_triggerR t), for the same reason. Instead, the following 
weaker axiom holds true for probabilistic disposition: r (d has_realization r  
r has_triggerR t) d has_triggerD t. 

In the most general case, we want to assign probabilities to triplets <disposition, 
trigger, realization>. We now have to investigate whether the entities that appear in this 
triplet are universals or particulars. For this, let us introduce D a disposition universal, 
X an independent continuant universal such that D has_bearer X, T an occurrent 
universal such that D has_triggerD T, and R an occurrent universal such that D 
has_realization R. Let us consider also a particular disposition d such that 
d instance_of D, x an independent continuant such that x instance_of X and 
d has_bearer x, t a process such that d has_triggerD t (and therefore t instance_of T), 
and r a process such that d has_realization r (and therefore r instance_of R) and 
r has_triggerR t. 

We will show that we can assign a probability to two different kind of triplets: 
(d,T,R) and (D,T,R). In order to show this, we have to find necessary and sufficient 
conditions for statements like “(d,T,R) has a probability p” or “(D,T,R) has a 
probability p”, conditions which should not mention any probabilistic concept. That is, 
we need to reduce probabilistic assignments to non-probabilistic statements. 
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3. Assignment of probability to a triplet (d,T,R) 

3.1. Definition of probability of (d,T,R) 

In order to illustrate the meaning of a statement like “(d,T,R) has a probability  p”, let 
us consider a particular case. Let us name T’ the universal process whose instances are 
sets of fifty white light flashes emitted by a 100 Watts bulb at a frequency of 10 Hz, 
seen by a person at a distance of one meter (any instance of such a repetition of fifty 
flashes will be abbreviated thereafter under the name ‘flashing light’); R’ the universal 
“epileptic seizure”; and D’ the universal disposition such that D’ has_triggerD T’ and D’ 
has_realization R’ (that is, D’ is the universal disposition of having an epileptic seizure 
while seeing a flashing light). Finally, let us write x’ the particular Mr. Dupont, a 
photosensitive epileptic patient; and d’ the instance of D’ such that d’ has_bearer x’ 
(that is, d’ is the disposition of Mr. Dupont to have an epileptic seizure when seeing a 
flashing light). The disposition d’ is associated with a categorical basis constituted by 
some properties of neural structures of M. Dupont. The probability p’ assigned to 
(d’,T’,R’) should then measure the causal power of these neural anomalies in triggering 
an epileptic seizure of Mr. Dupont during a flashing light. 

This specific disposition d’ is a high-level disposition; it is likely that there are 
many lower-level dispositions being triggered in Mr. Dupont’s brain which keep on 
manifesting until a particular threshold is reached and M. Dupont has a fit (see [14] for 
a theory of dispositions along these lines). However, an ontology of medicine would 
focus on such a high-level disposition – not the lower-level dispositions underlying it 
(unless its granularity would be pushed to the neurobiological level). Therefore, we 
have to find a way to define the causal power assigned to the triplet (d’,T’,R’). 

Such a causal power can be defined according to the lines mentioned in section 1, 
using the fact that universals are repeatable (that is, they can be instantiated by several 
particulars): p’ equals 0.2 if and only if, in every random hypothetical infinite sequence 
of flashing lights perceived by Mr. Dupont, the limit of relative frequency of situations 
causing an epileptic seizure is 0.2. 

It seems that BFO does not have enough expressive power for these concepts. As a 
matter of fact, a hypothetical infinite sequence is composed (at least in part) by possible, 
non-actual entities – whereas BFO only recognizes actual particulars. In order to 
circumvent this problem, we will consider here an extension of BFO that recognizes 
also possible, non-actual particulars. The difficulties raised by this extension are out of 
reach of this article; and we do not claim that BFO should be permanently extended in 
this way (cf. our discussion in the Conclusion section). Here, we are just concerned 
with finding the necessary concepts to rephrase probability assignments in non-
probabilistic statements, in order to determine to which kind of entities one can assign 
probabilities. In the remainder of this article, we will accept that particulars can be 
either actual or possible entities. 

Let us name “sequence generated by (d,T)” an infinite sequence of possible 
particulars which are instances of T and triggers of d. That is, if G is a sequence 
generated by (d,T), one can write G = (t1, t2, …, tn,...) where : i∈N, ti instance_of T  
d has_trigger ti. Let us now write: Gn

R = (ti | i∈[1,n], ∃ri ri instance_of R  
d has_realization ri  ri has_triggerR ti). That is, Gn

R is the subsequence, amongst the 
n first elements of G, of the processes that will trigger a realization of d. 
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Let us elaborate on our former epilepsy example. In this case, a sequence G’ 
generated by (d’,T’) is a hypothetical infinite sequence of flashing lights perceived by 
Mr. Dupont, and G’n

R’ is the subsequence, amongst the n first elements of G’, of the 
flashing lights that would cause an epileptic seizure in Mr. Dupont. 

The propensity theory introduces several conditions (cf. [12]), that we can 
formulate in our framework the following way; let Z be a set of sequences generated by 
(d,T), then: 

� Z satisfies the convergence condition iff for any sequence G of Z, Card(Gn
R)/n 

has a finite limit as n tends to +∞. 
� Z satisfies the independence condition iff for any sequences G1 and G2 of Z, 

then: limn->+∞[Card(G1
n

R)/n] = limn->+∞[Card(G2
n

 R)/n] 
� Z satisfies the condition of Von Mises-Church randomness iff for any 

sequence G of Z, if a subsequence G° of G is extracted by a recursive place 
selection function, then limn->+∞[Card(G°n

R)/n] = limn->+∞[Card(Gn
R)/n] (see 

[16] for more details; this condition is introduced to exclude sequences which 
are not random, e.g. a perfectly regular alternation of coin tosses that lead 
respectively to heads and tails). 

Unfortunately, the set of all sequences generated by (d,T) will not satisfy these 
three conditions. For example, if a fair coin were tossed an infinite number of times, it 
would typically fall on heads with a limiting probability of ½. However, it is possible 
(although highly non-typical) that it would fall on heads at every single toss of this 
infinite sequence; and of course, the relative frequency of the result ‘heads’ obtaining 
in this sequence (namely, 1) is not the correct value of the probability (which is ½) (see 
[15] for a discussion of this point). Defining precisely what is a “typical” sequence is a 
challenge for this kind of propensity interpretations of probability, a challenge that we 
will not tackle here (let us just remark that using the strong law of large numbers to 
solve this problem would not work, or at least not directly and easily – see e.g. [8] on 
this point). One possible solution that has been considered would involve using Lewis-
Stalnaker semantics for counterfactuals, arguing that such non-typical sequences would 
not occur in any of the nearest possible worlds in which a fair coin is tossed infinitely 
many times (see [16]). Here, we will just accept without more discussion this notion of 
“typical” sequence generated by (d,T). As we said, all major interpretations of 
probability face important difficulties; defining typical sequences is precisely the major 
difficulty bearing on propensity interpretations. Our purpose here is not to solve this 
perennial problem, but to adapt the propensity interpretation to the framework of 
applied ontologies. 

Then, if the set of typical sequences generated by (d,T) satisfies the three 
conditions of Convergence, Independence and Randomness, one can define a 
probability assignment in the following way: (d,T,R) has a probability p if and only if 
for every typical sequence G generated by (d,T), limn->+∞Card(Gn

R)/n = p. 

3.2. Determination of probability of (d,T,R) 

This concept of probability thus clarified, we now face another question: how can we 
determine the value of the probability associated with (d,T,R) ? As a matter of fact, in 
practice, we never have direct access to hypothetical infinite sequence of events. The 
answer to this problem is simple: although the probabilities are defined as limits of 
relative frequencies in infinite hypothetical sequences, we can estimate their values 
through relative frequencies in actual finite sequences. 
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Let us call “finite sequence associated with (d,T)” a finite sequence of actual 
instances of T which are triggers of d. Let us assume that we have recorded such a 
finite sequence G* = (t1, t2, …, tN) where: i∈[1,N], ti instance_of T  d has_trigger ti. 
Let us define then G*R = (ti | i∈[1,N], ∃ri ri instance_of R  d has_realization ri  
ri has_triggerR ti). Then the value Card(G*R)/N will provide an estimate of the 
probability associated with (d,T,R). 

For example, if we have a recording of 27 episodes of Mr. Dupont perceiving a 
flashing light (these episodes being separated enough in time so that there would be no 
cumulative effects), and that on these 27 episodes, 6 of them led to an epileptic seizure, 
then 6/27 is an estimate of the value of the probability associated with the disposition 
of Mr. Dupont to undergo an epileptic seizure while perceiving a flashing light. 

Of course, the larger our sample, the more confident we can be in our probability 
estimate; and statistical tests can evaluate the quality of the estimation. Moreover, we 
know that the relative frequency in a finite sample is certainly at least slightly different 
from the real probability value (even if the sample is large). However, it is a potentially 
reliable estimate of the probability value. One has to remember here that ontologies do 
not claim to be true representations of the world: the methodology underlying them is 
fallibilist (cf. [17]). That is, ontologies may not be true, but represent our best 
estimation of the reality. Therefore, probability estimates could figure in them, even if 
these values are probably slightly different from the real probability values. 

One has to notice however that this method to estimate probabilities through finite 
sequences is not always available. Remember the case of Mr. Dupont and its epileptic 
seizures. It may be the case that we cannot register several flashing lights perceived by 
Mr. Dupont, and therefore that we cannot register the relative frequencies of the 
flashing lights that lead to an epileptic seizure. It is more likely that we will have to 
rely on medical data obtained on a sample of several photosensitive epileptic patients, 
not only on Mr. Dupont. This requires the formalization of another kind of probability, 
not associated with a triplet of the kind (d,T,R), but of the kind (D,T,R). 

4. Assignment of probability to a triplet (D,T,R) 

4.1. Definition of the probability of (D,T,R) 

We have defined above the probability that a particular photosensitive epileptic patient 
(for example Mr. Dupont) undergoes an epileptic seizure when seeing a flashing light. 
We will now propose a definition of the probability that a non-specified photosensitive 
epileptic patient undergoes an epileptic seizure when seeing a flashing light; that is, the 
probability will be associated with a triplet containing a universal disposition D’ borne 
by the universal photosensitive epileptic patient X’, rather than with a triplet containing 
a particular disposition d’ borne by a particular photosensitive epileptic patient x’ like 
Mr. Dupont. 

The method will be similar to the former one. First, let us call “sequence generated 
by (D,T)” an infinite hypothetical sequence of couple of instances of D and T, such that 
in every couple the first element (the instance of D) has as trigger the second one (the 
instance of T). That is, if H is a sequence generated by (D,T), one can write H = ((d1,t1), 
(d2,t2), …, (dn,tn),...) where : i∈N, di instance_of D  ti instance_of T  
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di has_triggerD ti. Let us now write Hn
R  = ((di,ti) | i∈[1,n], ∃ri ri  instance_of R  di 

has_realization ri  ri has_triggerR ti). That is, Hn
R is the subsequence, amongst the n 

first elements of H, of the processes ti that trigger a realization of the disposition di. Let 
us now assume that the same three conditions as before (convergence, independence, 
randomness) are verified by the set of typical sequences generated by (D,T). Then one 
can define an assignment of probability in a similar way: (D,T,R) has a probability p if 
and only if, for every typical sequence H generated by (D,T), limn->+∞Card(Hn

R)/n = p. 
Elaborating on our epilepsy example, if H’ is a sequence generated by (D’,T’), H’ 

is an infinite sequence of couple of instances < epileptic disposition borne by a 
photosensitive patient, flashing light perceived by this patient > ; and H’n

R is the 
subsequence, amongst the n first elements of H’, of the pairs (di,ti) such that the 
flashing light ti causes an epilepsy seizure ri in the patient bearer of the disposition di. 
The probability p’ associated with (D’,T’,R’) will then be defined as the limit of 
relative frequencies of flashing lights leading to epileptic seizures over a hypothetical 
random infinite sequence of flashing lights undergone by photosensitive epileptic 
individuals. 

4.2 Determination of the probability of (D,T,R) 

This being defined, the same question as before reappears: how can we evaluate 
practically the probability assigned to a triplet (D,T,R)? The answer will be similar to 
the one we gave before: the actual finite relative frequencies will provide estimates of 
limits of infinite hypothetical relative frequencies. For example, in the epilepsy case, in 
order to estimate the probability that a non-specified photosensitive epileptic patient 
will have an epileptic seizure when seeing a flashing light, we will estimate the relative 
frequency of epileptic seizures that obtained in a finite sample of flashing lights 
perceived by a finite sample of photosensitive epileptic patients. 

More generally, let us call “finite sequence associated with (D,T)” a finite 
sequence of couple of instances of D and T, such that in every couple the first element 
(the instance of D) has as a trigger the second element (the instance of T). That is, if H* 
is a finite sequence associated with (D,T), one can write H* = ((d1,t1), (d2,t2), …, 
(dN,tN)) where : i∈[1,N], di instance_of D  ti instance_of T  di has_triggerD ti. Let 
us define: H*R = ((di,ti) | i∈[1,N], ∃ri ri instance_of R  di has_realization ri  
ri has_triggerR ti). Then Card(H*R)/N will provide an estimate of the probability 
associated with (D,T,R). 

For example, if we have registered 954 flashing lights undergone by different 
photosensitive epileptic patients, and that on these 954 situations, 113 have led to an 
epileptic seizure, then an estimate of the probability that a non-specified photosensitive 
epileptic patient has an epileptic seizure during a flashing light would be 113/954. Here 
again, such an estimate may not provide the true value of the associated probability, but 
it fits in a fallibilist representation of reality. 

4.3 Use of the probability of (D,T,R) in order to estimate the probability of (d,T,R) 

As we said, it is sometimes not possible to obtain a finite sequence associated with 
(d,T,R), and hence to obtain an estimate of the probability of (d,T,R) as indicated in 3.2. 
In this case, we can try to estimate, if it is available, the probability of (D,T,R), where D 
is a universal instantiated by d (i.e. d instance_of D). As a matter of fact, since d is an 
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instance of D, the categorical basis of d may have a causal power similar (to some 
extent) to the causal power of the categorical basis of D; therefore, the estimate of the 
probability of (D,T,R) may provide us with an approximation of the probability of 
(d,T,R). 

Of course, the more specific the universal D, the better the probability associated 
with (D,T,R) will approximate the probability associated with (d,T,R). For example, the 
probability associated with the disposition borne by the universal of photosensitive 
epileptic patient to have a seizure when seeing a flashing light will provide an estimate 
of the probability that Mr. Dupont has a seizure when seeing a flashing light; but if we 
know that Mr. Dupont is a 46-years-old male, then the probability associated with the 
disposition borne by the universal (or defined class) of a male photosensitive epileptic 
patient who is between 40 and 50 years old will presumably provide an even better 
estimate of the probability associated with the disposition borne by Mr. Dupont. This is 
a version of the “principle of the narrowest reference class” due to Reichenbach [18], 
who proposed to “proceed by considering the narrowest class for which reliable 
statistics can be compiled” (see also [10]). 

5. Conclusion 

Let us now summarize. The probability of a disposition measures the intensity of the 
causal power of the categorical basis of this disposition in the realization of a given 
process, when a given kind of triggering process happens. The value of this causal 
power can be identified with the limit of relative frequencies, over an infinite 
hypothetical repetition of possible instances of triggering processes, of these processes 
that triggers an instance of a realization process. Relative frequencies obtained in a 
finite sequence of instances of the triggering process provide estimates of the values of 
these probabilities. Finally, the value of the probability associated with a triplet of the 
kind (D,T,R) may approximate the value of the probability associated with a triplet of 
the kind (d,T,R), where d instance_of D. 

We have shown that representing a hypothetical infinite sequence of instances of 
triggering process requires to consider not only actual, but also possible, non-actual 
instances. Extending BFO to include possible instances would certainly have very 
significant consequences. Fortunately, we do not need to change BFO in such a way. 
We have shown here how, with such a change, one could define an attribution of 
probabilities to triplets of the kind (d,T,R) or (D,T,R). This being shown, we can now 
work with the classical version of BFO, restricted to actual entities, and introduce 
probability assignments as a primitive operation on triplets of the kind (d,T,R) or 
(D,T,R). It was important though to investigate the foundations of probability 
assignments, in order to determine to which kind of triplets we can assign a probability. 
Without such an investigation, the meaning of the notion of probability would have 
remained unclear, and it would therefore have been unclear to which kind of entities 
(particulars or universals) we can assign probabilities2. 

This leads us now to three questions that exceed the scope of this article. First, how 
should probabilistic entities and probability values be represented in the ontology? 

                                                           
2 We could also wish to assign probabilities not to a particular individual or to a universal of individual, 

but to a particular of population or to a universal of population. This raises some new questions that have 
been discussed by Eells [15] (pp. 45-55). 
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Second, how should probability assignments to triplets of the kind (d,T,R) or (D,T,R) 
be represented in the framework of ontologies, which accept only binary relations? 
(and how should they be made in artifacts representing ontologies, like OWL or OBO 
files) This problem also appears for surefire dispositions, and it has been partially 
investigated by Röhl & Jansen ([2]). Future investigations concerning both surefire and 
probabilistic dispositions will be needed in the future. And third, at which probability 
threshold should we assert a disposition in an ontology? Since there is no objective 
threshold guided by physical reality, such a threshold should be chosen by a principle 
of relevance: some dispositions are so weak that there is no practical interest in 
representing them in an ontology. But it could be expected that this threshold of 
relevance would depend, amongst other factors, on the field under consideration 
(biology, medicine, engineering…) and on the goal of the ontology (for example, do 
we want to avoid type I error - false positive - or type II error - false negative - when 
using the ontology; cf. [19] for an introduction to this problem). 

Finally, let us notice that this analysis deals only with probabilities associated with 
dispositional entities, which are inherently causal. In the medical domain, that would 
include for example: the probability to get a disease in some given circumstances; the 
sensitivity of a test (i.e. the probability to have a positive result to a test if one has the 
disease); or its specificity (i.e. the probability to have a negative result to a test if one 
does not have the disease). However, this account does not apply to evidential, non-
causal probabilities, like the positive predictive value of a test (i.e. the probability to 
have a disease if one is tested positive) or the negative predictive value of a test (i.e. the 
probability to not have the disease if one is tested negative). In such situations, the 
probability characterizes the evidential strength of some evidence (for example a 
positive or negative test) in determining if an event (for example having got the 
disease) happened or not in the past. Such probabilities are epistemic and do not 
characterize the strength of a disposition (although their values can be constrained by 
probability values associated to some related dispositions). Their formalization in the 
framework of ontologies is therefore a totally different task, and needs to be 
investigated in future works3. 
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