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CLINICAL STUDY
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Abstract
Purpose Isocitrate dehydrogenase (IDH) and 1p19q codeletion status are importantin providing prognostic information as 
well as prediction of treatment response in gliomas. Accurate determination of the IDH mutation status and 1p19q co-deletion 
prior to surgery may complement invasive tissue sampling and guide treatment decisions.
Methods Preoperative MRIs of 538 glioma patients from three institutions were used as a training cohort. Histogram, shape, 
and texture features were extracted from preoperative MRIs of T1 contrast enhanced and T2-FLAIR sequences. The extracted 
features were then integrated with age using a random forest algorithm to generate a model predictive of IDH mutation sta-
tus and 1p19q codeletion. The model was then validated using MRIs from glioma patients in the Cancer Imaging Archive.
Results Our model predictive of IDH achieved an area under the receiver operating characteristic curve (AUC) of 0.921 in 
the training cohort and 0.919 in the validation cohort. Age offered the highest predictive value, followed by shape features. 
Based on the top 15 features, the AUC was 0.917 and 0.916 for the training and validation cohort, respectively. The overall 
accuracy for 3 group prediction (IDH-wild type, IDH-mutant and 1p19q co-deletion, IDH-mutant and 1p19q non-codeletion) 
was 78.2% (155 correctly predicted out of 198).
Conclusion Using machine-learning algorithms, high accuracy was achieved in the prediction of IDH genotype in gliomas 
and moderate accuracy in a three-group prediction including IDH genotype and 1p19q codeletion.
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Introduction

Gliomas account for 81% of primary malignant brain tumors 
and confer significant mortality and morbidity [1]. Patients 
with glioblastoma, the most common glioma histology, have 

a median survival of 15–16 months, despite surgery, chem-
otherapy, and radiation therapy [2]. Although the natural 
history of low-grade gliomas (LGGs) varies greatly with 
survival averaging approximately 7 years, LGGs in adults 
eventually progress to high-grade glioma and premature 
mortality [3].

IDH1 mutations, specifically involving the amino acid 
arginine at position 132, were first described in 12% of 
glioblastomas [4], followed by observation that they are 
present in 50–80% of LGG patients [5]. Importantly, IDH 
mutations confers diagnostic and prognostic implications. 
Gliomas with the IDH1 mutation (or its homolog IDH2) 
is associated with a significantly more favorable survival 
outcomes than the IDH1/2 wild-type tumors, independent 
of histological grade [6, 7]. Due to the prognostic signifi-
cance of the IDH mutation, the World Health Organiza-
tion (WHO) updated its classification criteria in 2016 to 
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integrate IDH1/2 status as a molecular parameter for clas-
sifying gliomas [8]. IDH mutants are driven by specific 
epigenetic alterations, which may make them susceptible 
to therapeutic interventions (such as temozolomide) that 
are less effective against IDH wild type tumor [9, 10]. This 
is supported by in vitro experiments, which demonstrated 
increased radio- and chemo-sensitivity in IDH-mutated 
cancer cells [11, 12]. Targeted therapy against IDH muta-
tion has been shown to be associated with a favorable 
safety profile and prolonged stable disease in Phase I study 
of cholangiocarcinoma [13] and glioma [14]. Codeletion 
of 1p19q has also been proven to be a prognostic molecu-
lar marker for positive tumor response to radiation and 
chemotherapy and associated with better survival [15–17]. 
The Cancer Genome Atlas Research Network classified 
LGGs into three molecular categories: gliomas with IDH 
mutation and 1p19q codeletion (IDHmut-codel), gliomas 
with IDH mutation and no 1p/19q codeletion (IDHmut-
non-codel) and gliomas with wild-type IDH (IDHwt). 
IDHwt LGGs are associated with poor outcome. LGGs 
with an IDH mut-codel are more sensitive to radiation and 
chemotherapy and associated with longer survival than 
other types of diffuse gliomas [18].

Although biopsies can be performed at relatively low-
risk, an approach using MRI imaging to predict IDH and 
1p19q genotype preoperatively is a less expensive and non-
invasive alternative. The early identification of IDH and 
1p19q status may benefit the prediction of patient’s progno-
sis and predictive of responsiveness to chemotherapy and 
radiation.

Several advanced imaging techniques have been shown 
to predict IDH and/or 1p19q status in gliomas. Most of the 
previous approaches utilized a single imaging feature or 
parameter, such as relative cerebral blood volume, sodium, 
spectroscopy, blood oxygen level-dependence, perfusion 
and 11C–methionine PET [19–25]. However, inclusion of 
these advanced imaging sequences such as DWI, PWI, MRI 
spectroscopy and  [18F] fluoroethyltyrosine-PET(FET-PET) 
images may not be useful or reliable for determining geno-
type of the gliomas compared with conventional MR images 
[26, 27]. Besides, many of these imaging acquisitions are not 
routinely obtained in clinical care. In this study, we strived 
to develop a method solely employing imaging sequences 
that would be acquired during standard of care in clinical 
evaluations.

To the best of our knowledge, there are limited studies 
that predict IDH and 1p19q status utilizing standardized 
imaging methodology and through large sample size from 
multiple institutions. We hypothesized that a model inte-
grating features from conventional MRI using a machine-
learning approach could diagnose IDH mutation and 1p19q 
codeletion status and identify specific features relevant to 
the genotype.

Methods

Patient cohort

The training cohort consisted of patients with histologi-
cally confirmed diffuse gliomas treated at Hospital of the 
University of Pennsylvania (HUP), Brigham and Women’s 
Hospital (BWH), and Massachusetts General Hospital 
(MGH). Institutional Review Board (IRB) approval was 
obtained for the training cohort with waiver of consent. 
The validation cohort consisted of patients with gliomas 
who have overlapping clinical and molecular data from 
The Cancer Genome Atlas (TCGA) and presurgical MR 
imaging data from The Cancer Imaging Archive (TCIA), 
an imaging sharing resource that houses images cor-
responding to TCGA patients [28, 29]. Analysis of the 
TCGA/TCIA cohort is exempt from IRB approval under 
the TCGA/TCIA data use agreements (http://cance rgeno 
me.nih.gov/about tcga/polic ies/infor medco nsent ). All 
patients identified met the following criteria: (i) histo-
pathologically confirmed primary grade II–IV glioma 
according to current WHO criteria, (ii) known IDH 
genotype, and (iii) available preoperative MR imaging 
consisting of post-contrast axial T1-weighted (T1 post-
contrast) and T2-weighted fluid attenuation inversion 
recovery (FLAIR) images. Patients whose IDH genotype 
were not confirmed per criteria (see “Tissue Diagnosis 
and Genotyping” section below) were excluded (N = 93). 
Our final patient cohort included 227 patients from HUP, 
156 patients from BWH, 155 patients from MGH and 206 
patients from TCIA.

Tissue diagnosis and genotyping

For the HUP cohort, IDH1R132H mutant status was deter-
mined using either immunohistochemistry (IHC) or 
next-generation sequencing, performed by the Center for 
Personalized Diagnostics at HUP. For the BWH cohort, 
IDH1/2 mutations were determined using IHC, mass 
spectrometry-based mutation genotyping (OncoMap), 
or capture-based sequencing (OncoPanel), depending on 
the available genotyping technology at the time of diag-
nosis. OncoMap was performed by Center for Advanced 
Molecular Diagnostics of the BWH and OncoPanel was 
performed by Center for Cancer Genome Discovery of 
the Dana-Farber Cancer Institute. For the MGH cohort, 
IDH1/2 status were confirmed either by immunochemis-
try or next generation sequencing. For this retrospective 
study, only gliomas with absence of IDH1/2 mutations as 
determined by full sequencing assay were included in our 
analyses as IDH-WT gliomas. IDH-mutated gliomas were 
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defined by the presence of mutation as indicated by IHC or 
sequencing on samples provided to the pathology depart-
ment at each institution at the time of surgery. IDH1- and 
IDH2-mutated gliomas were collapsed into one category. 
For patients in the TCIA cohort, IDH1/2 mutation data 
were downloaded from TCGA and IvyGap data portal.

The 1p/19q co-deletion genotype was determined via flu-
orescence in situ hybridization (FISH) or polymerase chain 
reaction (PCR) depending on the availability of the hospital. 
For patients in the TCIA cohort, 1p19q codeletion data were 
downloaded from TCGA and IvyGap data portal.

Expert tumor segmentation

For the HUP and TCIA cohorts, MR imaging for each 
patient was loaded into Matrix User (v2.2), and 3D FLAIR 
tumor regions were manually drawn slice-by-slice in the 
axial plane for the FLAIR image by a user (H.Z.) followed 
by editing by a radiologist (H.X.B). For the BWH cohort, 
FLAIR tumor regions were drawn with the 3D Slicer Edi-
tor and Segmentation Wizard module(https ://www.slice 
r.org/wiki/Docum entat ion/Night ly/Exten sions /Segme ntati 
onWiz ard) on the FLAIR image (K.C.) and edited by an 
neuroradiologist (R.Y.H.) [30, 31]. For the MGH cohort, 
FLAIR tumor regions were drawn by a user (V.K.K., J.T.S.) 
and edited by a neurosurgery resident (A.B.) on the FLAIR 
image with 3D Slicer. We derived expert manual tumor seg-
mentations for half of the patients. The entire abnormality 
was segmented (Fig. 1) on FLAIR image of each patient. We 
used FLAIR to draw the mask for the predictive model, then 
this FLAIR mask was applied to both contrast enhanced T1 
and FLAIR sequences.

Preprocessing

Brain extraction was performed using Robust Learning-
Based Brain Extraction [32]. We then normalized the 
intensity values of each image to have zero mean and unit 
variance. To account for differences in image resolution, we 
resampled the images to isotropic 1 mm with linear inter-
polation. Similarly, the manual tumor segmentations were 
resampled using nearest neighbor interpolation.

MRI feature extraction

For each glioma case, we extracted 3 categories of features 
(histogram, shape and texture) from brain and tumor masks 
to maximize the characterization of the tumor. Eighteen 
types of histogram features were calculated: variance, skew-
ness, kurtosis, standard deviation, maximum, mean, mean 
absolute deviation, minimum, range, root mean squared, 
uniformity, max probability, entropy, and intensity percen-
tiles (10, 25, 50, 75, 90). Ten types of shape features were 
calculated: volume, number of centroids, surface area, com-
pactness (calculated 2 different ways), solidity, maximum 
diameter, spherical disproportion, sphericity, and surface 
area to volume ratio. The ratios of different shape features 
were then calculated and also inputted as additional shape 
features. Types of texture features implemented included 
8 texture features from the Gray-Level Co-occurrence 
Matrix (GLCM), 13 texture features from the Gray-Level 
Run-Length Matrix (GLRLM), 13 texture features from the 
Gray-Level Size Zone Matrix (GLSZM), and 5 texture fea-
tures from the Neighborhood Gray-Tone Difference Matrix 
(NGTDM). Before automated features were calculated, the 
intensity of MR images was normalized to adjust for any 

Fig. 1  FLAIR tumor segmentation of a a grade II, b grade III, c grade IV. Segmentations shown are overlaid on axial, non-contrasted FLAIR 
image
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differences in acquisition parameters. The intensity was nor-
malized first by identifying the normal brain for each patient 
(non-skull and non-tumor regions, including both white mat-
ter and gray matter), followed by dividing the image inten-
sity of the tumor region by the interquartile range of inten-
sity values within the normal brain region. The magnetic 
field strength, resolution, and slice thickness, echo time and 
repetition time of pre-operative MR images from 4 institu-
tions are attached in Supplementary Figs. 1, 2 and 3.

Random forest classification

The machine-learning procedure was performed using the 
Statistics and Machine Learning Toolbox (MATLAB 2015a 
Natick, MA). A random forest algorithm was used to classify 
patients as either IDH wild type or mutant. Random for-
est is one of several machine-learning algorithms that have 
been applied in clinical classification problems. It is espe-
cially advantageous when the number of predictor variables 
greatly exceeds sample size because it is resistant to overfit-
ting [33]. Furthermore, it provides an estimation of gener-
alizability though calculation of out-of-bag error, defined as 
the mean prediction error in each patient within the training 
cohort, using only the trees that did not have that patient in 
the bagged sample [34]. In this study, the training cohort 
(HUP/BWH/MGH) was used to develop the learning model, 
while cases in the validation cohort (TCGA) were used to 
independently evaluate the performance of the final model. 
The predictive value of each MRI feature for determining 
IDH genotype and 1p19q codeletion was calculated indi-
vidually by area under the receiver operating characteristic 
curve (AUROC) analysis. All the MRI extracted features 
were used in our training algorithm. The heatmap of Pear-
son correlations among all these features was attached as 
Supplementary Fig. 4. The tree depth was set to 64, and the 
algorithm was set to grow to a total of 4096 trees, a number 
empirically determined to be a reasonable upper bound in 
our learning models and before which the training set clas-
sification error commonly begins to converge [35]. Finally, 
the model was tested on the validation cohort using the same 
model score threshold selected based on AUROC analysis 
of the training cohort. Figure 2 provides an overview of our 
MRI processing pipeline.

Features with most significant contributions to the final 
model were determined by the increase in prediction error 
if the values of that feature were permuted across the out-
of-bag observations (a method of measuring the prediction 
error of random forests models utilizing bootstrap aggregat-
ing (bagging) to sub-sample data samples used for training). 
This measure was computed for every tree and then averaged 
over the entire ensemble and divided by the standard devia-
tion over the entire ensemble [36].

Results

Patient characteristics

The median age of the HUP, BWH, MGH, and TCIA cohorts 
were 53, 48, 52, and 53 years respectively. The percentage 
of males was 53%, 56%, 60%, and 56%, respectively. The 
HUP cohort was 22% grade II, 34% grade III, and 42% grade 
IV. The BWH cohort was 20% grade II, 29% grade III, and 
51% grade IV. The MGH cohort was 13% grade II, 36% 
grade III, and 51% grade IV. The TCIA cohort was 22% 
grade II, 28% grade III, and 50% grade IV. Collectively, 
the HUP, BWH, MGH, and TCIA cohorts were 37%, 55%, 
48%, and 41% IDH-mutant, respectively. IDH mut-codel 
gliomas accounted for 10%, 25%, 13% and 12% of HUP, 
BWH, MGH, and TCIA cohorts (see Table 1).

MRI and clinical features

From each patient’s imaging, a total of 126 features (his-
togram, shape and texture) were extracted. Together with 
one clinical feature (age), they were all used in the training 
algorithm.

Fig. 2  MRI feature extraction and machine-learning pipeline
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IDH genotype prediction

The model (Model 1) using age and imaging features 
achieved an area under the receiver operating characteristic 
curve (AUC) of 0.921 (95% CI 0.894–0.941) in the training 
cohort and 0.919 (95% CI 0.871–0.949) in the validation 
cohort. Age offered the highest predictive value, followed by 
shape features. The 15 features that contributed most to our 
model are shown in Table 2. Based on the top 15 features, a 
model was generated and achieved the AUC of 0.917 (95% 
CI 0.889–0.938) in the training cohort and 0.916 (95% CI 
0.867–0.947) in the validation cohort, respectively. To assess 
the impact of imaging features alone, we also built a model 
excluding age; this model achieved an AUC of 0.870 (95% 
CI 0.836–0.897) in the training cohort and 0.886 (95% CI 
0.827–0.926) in the validation cohort.

1P19q genotype prediction

For IDH mutant subset, we trained a model (Model 2) inte-
grating age to predict 1p/19q status using patients from 
MGH, BWH, HUP (total N = 197) and tested the model by 
samples from TCIA (total N = 84). The model achieved a 
training AUC of 0.685 (95% CI 0.606–0.754) and testing 
AUC of 0.716 (95% CI 0.577–0.823). Age offered the high-
est predictive value, followed by histogram features. The 15 
features that contributed most to our model are shown in 
Table 3. Based on the top 15 features, a model was gener-
ated and achieved the AUC of 0.670 (95% CI 0.589–0.743) 
in the training cohort and 0.692 (95% CI 0.543–0.801) in 
the validation cohort, respectively. To assess the impact of 
imaging features alone, we also built a model excluding age; 

Table 1  Summary of patient 
characteristics

Cohort BWH MGH HUP TCIA

n 156 155 227 206
Age, mean: years, (range) 48; 18–85 52; 22–86 53; 18–88 53; 20–84
Sex: n, male (%) 88 (56%) 93 (60%) 122 (53%) 116 (56%)
Grade II, n (%) 31 (20%) 19 (13%) 51 (22%) 45 (22%)
Grade III, n (%) 46 (29%) 56 (36%) 79 (34%) 58 (28%)
Grade IV, n (%) 79 (51%) 79 (51%) 97 (42%) 103 (50%)
IDH mutated, n (%) 87 (55%) 74 (48%) 89 (37%) 85 (41%)
IDH wild type, n (%) 69(45%) 81(52%) 138(63%) 121(59%)
IDH mutant-1p19q codel, n (%) 39 (25%) 20 (13%) 24 (10%) 25 (12%)
IDH mutant-1p19q noncodel, n (%) 39 (25%) 37 (24%) 38 (17%) 59 (28%)
IDH mutant-1p19q unknown, n (%) 9 (6%) 17 (11%) 27 (12%) 1 (0.4%)

Table 2  Top 15 features contributing to the predicting model of IDH

Single var 
AUC testing 
cohort

Measure of 
importance

Age 0.8475 2.9742
Shape_Volume 0.8475 1.0796
Shape_NumberCentroids 0.8568 0.5361
Shape_MaxAxialDiameter 0.8085 0.4336
Shape_Solidity 0.7536 0.3998
FLAIR_Histogram_Skewness 0.7697 0.3994
Shape_SurfaceArea 0.7833 0.3892
FLAIR_Histogram_Kurtosis 0.6237 0.3281
Shape_Compactness 0.7681 0.3185
FLAIR_Histogram_Range 0.5816 0.3175
FLAIR_Histogram_Entropy 0.6676 0.3107
Shape_SphericalDisproportion 0.699 0.279
FLAIR_Histogram_MaximumProb-

ability
0.5301 0.2642

FLAIR_GLSZM_HGZE 0.5463 0.2371
Shape_Sphericity 0.6785 0.2355

Table 3  Top 15 features contributing to the predicting model of 
1p19q

Single var 
AUC testing 
cohort

Measure of 
importance

Age 0.5986 0.0994
T1C_Histogram_Percentile50 0.5444 0.0945
T1C_Histogram_Percentile75 0.6034 0.0926
T1C_Histogram_Percentile25 0.6719 0.0879
T1C_Histogram_Uniformity 0.5569 0.0859
T1C_GLRLM_SRHGE 0.5505 0.0854
T1C_GLRLM_HGRE 0.5051 0.0835
T1C_GLRLM_LRLGE 0.5763 0.075
T1C_Histogram_MeanAbsoluteDe-

viation
0.6769 0.0716

FLAIR_Histogram_Percentile90 0.5614 0.0655
FLAIR_GLCM_AutoCorrelation 0.638 0.0654
Shape_Max3DDiameter 0.5559 0.0621
FLAIR_GLSZM_SZLGE 0.5946 0.0534
T1C_GLSZM_HGZE 0.5614 0.0532
T1C_Histogram_Minimum 0.5925 0.0512
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this model achieved an AUC of 0.681 (95% CI 0.603–0.751) 
in the training cohort and 0.690 (95% CI 0.549–0.803) in the 
validation cohort.

Three‑group prediction

Two separate models (Model 1 and Model 2 as stated above) 
were applied sequentially to the TCIA testing data set 
(N = 198, those with both IDH and 1p/19q status available): 
Model 1 for prediction of IDH status followed by model 2 
for prediction of 1p/19q status using IDH mutants (N = 71) 
predicted by the first model output. This generates 3 pre-
dictions: IDHwt, IDHmut-codel, IDHmut-non-codel. The 
overall accuracy for the 3 group prediction was 78.2% (155 
correctly predicted out of 198).

Discussion

Several studies have reported an association between radio-
graphic appearance and genotypes of gliomas [37–40]. 
Metellus et al. showed that IDH wild type in grade II glio-
mas were associated with an infiltrative pattern on MRI [41]. 
Qi et al. demonstrated that IDH mutants have a characteristic 
appearance on imaging, including sharp tumor margins and 
homogenous signal intensity [42]. Through MR imaging fea-
tures of 175 LGGs reviewed by using Visually AcceSAble 
Rembrandt Images(VASARI), Park et al. built a model pre-
dictive of IDH1 mutation with AUC of 0.859 and 0.788 in 
the discovery and validation sets [43]. However, one major 
limitation in these studies is that they requires manual rat-
ing thus rater variability is inevitable. Using clinical and 
imaging features in a random forest model to predict IDH 
genotype in 120 high-grade gliomas, Zhang et al. reported 
accuracies of 86% in the training cohort and 89% in the 
validation cohort derived from a single-institution data set 
[44]. Yu et al. built a radiomic model to predict IDH muta-
tion in grade II gliomas using only T2-weighted imaging 
and reported an accuracy of 80% in the primary cohort and 
83% on the validation cohort [45]. In a recent study, Hao 
et al. used routine preoperative MRIs of 165 patients from 
the TCGA/TCIA to generate texture features predicting IDH 
mutation and 1p19q status with an accuracy of 0.86 and 
0.96 within the same data set [46]. Akkus et al. presented 
machine intelligence to predict 1p19q status of 159 LGGs 
from post-contrast T1- and T2-weighted MR images using 
convolutional neural networks (CNN) and achieved accuracy 
of 87.7% [47]. However, none of these studies has attempted 
to predict genotype of gliomas in a combined cohort of dif-
fuse gliomas from multi-institutional data and all of them 
lack external independent validation.

In the current study, using data from multiple insti-
tutions, a random forest model integrating preoperative 

multimodal automated imaging features and age was con-
structed to predict IDH and 1p19q genotype in grade II-IV 
gliomas. This model relied only on standard-of-care pre-
operative MRI including contrast enhanced T1-weighted 
sequence and T2 FLAIR sequence. The model predictive 
of IDH achieved high area under the receiver operating 
characteristic curve (AUC) of 0.921 in the training cohort 
and 0.919 in the validation cohort. For model predicting 
3 group prediction (IDHwt, IDHmut-codel, IDHmut-
non-codel), however, the overall accuracy was moder-
ate (78.2%). For model predictive of 1p19q, the AUC 
was 0.685 in training set and 0.716 in validation set. We 
believe that this is likely due to sample size and should 
improve with larger data set available in the future.

While WHO grade information was available, we did 
not include this data in our model in order to understand 
the predictive accuracy based on pre-operative data alone. 
The only non-imaging feature included in the final model 
is patient age which is available to the radiologists preop-
erative and remains a strong feature correlating with IDH 
mutation and 1p19q status.

The predictive potential of individual imaging fea-
tures was assessed in univariate and multivariate analy-
sis, which was outperformed by the model constructed 
using machine learning methods. This demonstrates the 
ability of machine learning techniques to synergistically 
integrate features to discover distinct imaging phenotypes. 
In addition, the predictive model based on clinical and 
automated features derived from multi-institutional data 
was successfully validated on an independent multicenter 
patient cohort from the TCGA/TCIA, demonstrating the 
generalizability of our model.

The random forest method was chosen over other 
machine learning methods because of its high stability, 
generalizability, and predictive performance compared 
with other popular machine-learning classification meth-
ods. In a radiomic study by Chintan et al., 12 popular 
machine-learning classification methods arising from 12 
classifier families (Bagging(BAG), Bayesian (BY), Boost-
ing (BST), Decision trees (DT), Discriminant analysis 
(DA), Generalized linear models (GLM), Multiple adap-
tive regression splines (MARS), Nearest neighbors (NN), 
Neural networks (Nnet), Partial least square and principle 
component regression (PLSR), Random forests (RF), and 
Support vector machines (SVM)) were evaluated and com-
pared in terms of their predictive performance and stability 
against data perturbation. Random forests (RSD = 3.52%, 
AUC = 0.66 ± 0.03) was proven to have the highest prog-
nostic performance with high stability against data pertur-
bation. The current study has the largest sample size and 
independent validation of results among all studies inves-
tigating different machine-learning modeling methods for 
radiomics based clinical predictions [48]. Moreover, RF 
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has displayed high predictive performance in several other 
biomedical and other domain applications as well [49].

The features that contributed the most to our automated 
model predictive of IDH were predominantly age and shape 
features. Among the 15 features that contributed the most 
to the model, 9 were derived from the shape features. The 
high predictive values of shape features reflected the differ-
ences in growth pattern between IDH mutants and wild type. 
Unlike in our model, texture features were the top-perform-
ing features in the prediction of IDH of high grade gliomas 
in the study by Zhang et al. [24]. This may be caused by the 
difference of tumor grade ratio enrolled between two studies 
(70.8% of tumors are WHO grade IV gliomas in their study 
while 47.4% in our study population). Although the precise 
relationship between automated imaging features and the 
biology of IDH mutations remains unclear, our results pro-
vided quantitative insight into intratumor heterogeneity and 
behavior of tumor margins.

Even though our study constructed a model using con-
ventional MRI imaging that are routinely obtained pre-
operatively to predict IDH status with a high accuracy, we 
acknowledge several limitations to our study. Due to the 
retrospective study design where only known gliomas were 
selected, our model cannot readily be applied to situations 
where other tumor types as well as non-tumor mimickers 
are also common in the study population. The current model 
is most applicable for patients who have high likelihood of 
primary glioma based on standard radiographic evaluation. 
A more general model using data set from other lesion types 
will be needed to further improve generalizability. Our study 
also did not utilize advanced MR modalities such as perfu-
sion MRI and MR-spectroscopy, which have been demon-
strated to have potential in the prediction of IDH genotype 
[19, 21, 23]. Future studies combining conventional and 
advanced imaging may further improve the accuracy of non-
invasive IDH status prediction. Furthermore, our work to 
continue to enlarge our sample size is ongoing. We believe 
that the accuracy of 1p19q prediction should improve when 
larger data set is available. Finally, although our combined 
model achieved successful prediction of IDH status, the 
biological significance of the individual features remains 
unknown and require further evaluation.

In conclusion, using machine-learning algorithms, high 
accuracy was achieved in the prediction of IDH genotype in 
gliomas and moderate accuracy in a three-group prediction 
including IDH genotype and 1p19q codeletion. Our model 
may have the potential to serve as a noninvasive tool that 
complements invasive tissue sampling and guiding patient 
management at an earlier stage of disease.
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