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Abstract
The coefficient of correlation (r ) and the coefficient of determination (R2 or r2) have long been used in analytical chemistry, bioanalysis and
forensic toxicology as figures demonstrating linearity of the calibration data in method validation. We clarify here what these two figures are and
why they should not be used for this purpose in the context of model fitting for prediction. R2 evaluates whether the data are better explained by
the regression model used than by no model at all (i.e., a flat line of slope=0 and intercept ȳ), and to what degree. Hopefully, in the context of
calibration curves, the fact that a linear regression better explains the data than no model at all should not be a point of contention. Upon closer
examination, a series of restrictions appear in the interpretation of these coefficients. They cannot indicate whether the dataset at hand is linear
or not, because they assume that the regression model used is an adequate model for the data. For the same reason, they cannot disprove
the existence of another functional relationship in the data. By definition, they are influenced by the variability of the data. The slope of the
calibration curve will also change their value. Finally, when heteroscedastic data are analyzed, the coefficients will be influenced by calibration
levels spacing within the dynamic range, unless a weighted version of the equations is used. With these considerations in mind, we suggest
to stop using r and R2 as figures of merit to demonstrate linearity of calibration curves in method validations. Of course, this does not preclude
their use in other contexts. Alternative paths for evaluation of linearity and calibration model validity are summarily presented.

Introduction

Statistical tools allow for a better understanding of the under-
lying structure of the data and their correct interpretation in
any quantitative study. The coefficient of correlation (r) and
the coefficient of determination (R2 or r2) have long been
used as indicators of linear dependency between two vari-
ables (1, 2). Given that analytical chemistry, bioanalytical
and forensic toxicologymethod validation guidelines typically
include a requirement to demonstrate the linearity of the data
or confirm the adequacy of the calibration model used (3–
5), it seemed natural to use the r or R2 indicators for this
purpose. However, some authors have warned for quite some
time about the problems of deducing a linear relationship
from this indicator in the context of model fitting (1, 2, 6,
7), while some guidelines explicitly discourage this practice
(4, 5). Somewhat confusingly, the American Academy of
Forensic Sciences (AAFS) Standards Board’s ‘Standard Prac-
tices for Method Validation in Forensic Toxicology’ state that
the ‘calibration model shall not be evaluated simply via its cor-
relation coefficient (r)’, but that ‘assessment of coefficient of
determination (r2) for linear models’ is an ‘appropriate alter-
native’ among others (also cited are the residuals plot, analysis
of variance (ANOVA) lack-of-fit test and significance of the
second-order term of quadratic models) (3). The use of r or

R2 as a figure demonstrating linearity of the data in method
validation has been widespread and persists to this day, see
for example a sampling of recent publications (8–18).

In what follows, we hope to clarify what r and R2 are
and what they mean with regard to a regression. In combi-
nation with practical examples, it should become clear to the
reader why their use as figures of merit in an analytical method
validation comes with several limitations.

The Basics: A Definition of r and R2

The correlation coefficient, r or rxy, is defined by the following
equation (6):

r=
SXY√
SXXSYY

=

∑n
i=1 (xi− x̄)(yi− ȳ)√∑n

i=1 (xi− x̄)2
∑n

i=1 (yi− ȳ)2
(1)

Where SXY, SXX and SYY are sum of squares about the
mean; xi and yi are the x and y values for the ith sample; x̄
and ȳ are the averages over all samples.

The correlation coefficient can be understood as the ratio
of the degree to which x and y vary together over the degree
to which x and y vary separately (6). r is bounded, varying
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between −1 (decreasing or negative slope) and +1 (increasing
or positive slope).

The coefficient of determination, R2 or r2, as its nomencla-
ture suggests, is the square of the coefficient of correlation. It
can be defined as (6):

R2 =
SSReg
SYY

= 1− SSE
SYY

= 1−
∑n

i=1 (yi− ŷi)
2∑n

i=1 (yi− ȳ)2
(2)

Where SSReg is the sum of squares explained by the regres-
sion, SSE is the residual sum of squares, ŷi is the y value
predicted by the model for the ith sample and SYY, yi and ȳ
are as defined above.

The coefficient of determination is also bounded, with
a value between 0 and 1—which follows logically from
the fact that it is the square of a value between −1 and
+1. Furthermore, R2 will always be lower than the abso-
lute value of the coefficient of correlation, |r|, for a given
dataset. Intuitively, R2 is the ratio of the variation of Y
explained by the regression over the total variation of the
variable.

In what follows, for the sake of simplicity we will refer to
the coefficient of determination (R2) only. However, remem-
ber that this figure is simply the square of the coefficient of
correlation (r) and as such, the same caveats apply to this
indicator.

What Does It Mean?
Essentially, R2 evaluates whether the data are better explained
by a linear regression than by no model at all (i.e., a flat line of
slope=0 and intercept ȳ), and to what degree. In the context
of a calibration curve however, hopefully it is clear from the
get-go that the dataset is much better explained by the model
than none at all!

R2 assumes that the regression used is the correct model
to represent the data and evaluates the strength of associ-
ation between the two variables under this model (6). If a
linear regression is used, R2 assumes that this is the ade-
quate model; it therefore cannot indicate whether the rela-
tionship between the variables is linear. Nor can it alone
disprove that there is a relationship between the two vari-
ables: an R2 of zero can be obtained with data where a
functional relationship clearly exists (1, 6). Figure 1 shows
one such example: a mathematical function describes the data
(quadratic equation generating a parabola), yet the R2 is
null.

Why It Is Problematic in the Model Fitting
Context
In the following section, we will present some practical
examples illustrating why the use of r and R2 are prob-
lematic in a model fitting context (such as evaluating cal-
ibration curves in method validation). Modeling and plot-
ting were carried out in RStudio (R version 4.0.0, RStu-
dio version 1.2.5019). Details about the models simulated
as well as the R scripts are available in Supplementary
Data 1.

Figure 1. The relationship between the two variables x and y is clearly
described by a mathematical model (i.e., a functional relationship exists).
Nonetheless, r=0 and R2 =0, demonstrating that these values cannot
prove the absence of a relationship between variables.

R2 does not indicate if your dataset is linear; it
assumes linearity
R2 is often presented as a means to assess linearity in method
validation, i.e., to evaluate whether the data produced by the
method under evaluation are linear. While different thresh-
olds are quoted for ‘acceptable linearity’, an R2 above 0.9
is often cited as a criterion (2, 9, 14–16). Unfortunately,
R2 evaluates the strength of the association between the x
and y variables assuming that the regression model used is
the adequate one. Insofar as a linear regression is used with
the dataset, R2 will evaluate the strength of the association
assuming linearity. To demonstrate that this is the case, one
needs only to look at the cases presented in Figure 2. In
Figure 2A, a quadratic bond between variables x and y is
displayed by the curvature in the data points. Yet the coef-
ficient of determination for a linear regression is >0.99. In
Figure 2B, the linear relationship breaks down at higher con-
centration levels due to saturation of the detector. Yet, the
coefficient of determination is 0.99. These examples show
that high coefficient of determination values do not demon-
strate the linearity of the data. In these cases, opting for a
linear model on the basis of theR2 result would mean using an
erroneous model to represent the data (and quantify concen-
tration in unknown samples). This is not simply a theoret-
ical distinction; using a linear model instead of the correct
quadratic model for example can have important impacts on
the quantification results (2, 19, 20).

R2 is influenced by the variability of the data
By definition, an increase in the variance of the data will
cause a decrease in R2. Indeed, as volatility in the dataset

increases,
n∑
i=1

(yi− ŷi)
2 will increase in Equation (2), causing

the R2 value to drop. Hence, datasets generated with iden-
tical models, but with different variance, will yield different
R2 (Figure 3). The mathematical definition of R2 means such
behavior is expected; nonetheless, it means that divergent
R2 values for two datasets might be attributable to differ-
ences in precision rather than the targeted characteristics of
data linearity or regression model adequacy. In a method
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Figure 2. (A) A quadratic bond exists between the variables x and y, yet
the coefficient of determination is high (>0.99). (B) Linearity breaks down
at higher concentrations due to saturation of the detector, yet the
coefficient of determination is high (0.99).

validation setting, intra- and inter-day precision is better eval-
uated via the complete experiments designed for this specific
purpose.

R2 is influenced by the slope of the regression
The slope of the linear regression also has an impact on the
R2 result. All other things being equal, the steeper the cali-
bration curve, the higher the R2 will be (7). This is shown
by Figure 4, where increasing the slope by 150% yields an
increase in R2 from 0.8948 to 0.9807. This is why some ref-
erences label R2 as ‘both a measure of goodness of fit and
of steepness of the regression surface’ (in a two-variable case,
steepness of the regression line) (7). While again, this is an
expected behavior of this indicator, it means that divergent
R2 values for two datasets might be attributable to differences
in slope steepness. How then can a universal threshold be set
for all analytical chemistry methods in validation guidelines?
Two otherwise identical analytical methods would pass and
fail such a criterion purely based on their slopes.

Figure 3. Two calibration datasets generated from the exact same linear
model (y= 0.15x) will yield different coefficients of determination if their
precision is different. (A) %RSD≈5%; R2 =0.9948. (B) %RSD≈15%;
R2 =0.9627, lowered by the increased variability in the data.

If data are heteroscedastic, R2 varies with the
standards spacing unless a weighted version of the
equation is used
Calibration datasets are frequently heteroscedastic, meaning
the absolute precision of the measurements (standard devia-
tion) changes across the concentration values (19, 21). If this
characteristic of the data is not properly taken into account
in calculating the coefficients of correlation and determina-
tion, further distortion of the R2 value can occur in relation to
the experimental setup (standards spacing within the dynamic
range). In Figure 5, two heteroscedastic calibration datasets
with seven concentration levels are presented. In Figure 5(A),
standards are equidistant, whereas in Figure 5(B), more stan-
dards are present at the low end of the calibration range—
where the precision is greater for heteroscedastic data and
arguably where most cases in a therapeutic range would fall.
The coefficient of determination calculated is higher in the
second case (uneven placement of standards) than in the first
case (equidistant standards). In fact, running a simulation for
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Figure 4. Two calibration datasets differing only by their slope, (A)
y= 0.5x and (B) y= 1.25x, will yield different coefficients of
determination. The steeper the slope, the higher the R2 will be.

data generated using identical models with different standard
placements shows the hypothesis that theR2 values are identi-
cal can be rejected (P=0.0032) (22). Details of this simulation
can be found in Supplementary Data 1. If the previously stated
definitions for r Equation (1) and R2 Equation (2) are used on
heteroscedastic data, then calibration levels spacing within the
dynamic range has an impact on the coefficients of correla-
tion and determination values. A calibration curve with more
points in the lower variance region (typically the low end of
the curve) will result in a higher R2. A calibration curve with
more points in the higher variance region (typically the high
end of the curve) will result in a lower R2.

The problem here does not lie with the fact that a setup
other than equidistant standards spacing is used—such setups
are perfectly valid. Rather, the intersection of heteroscedastic
data with a non-weighted formula generates this issue. The
weighted versions of the calculations are (6):

rw =
SXY√
SXXSYY

=

∑n
i=1wi (xi− x̄)(yi− ȳ)√∑n

i=1wi(xi− x̄)2
∑n

i=1wi(yi− ȳ)2
(3)

Figure 5. Two calibration datasets generated by the same model, but
with (A) equidistant and (B) uneven calibration levels distribution. Using
standard formulas, the R2 value is higher in the second case, where
more standards are placed in the lower variance region (low end of the
calibration curve).

R2
w = 1− SSE

SYY
= 1−

∑n
i=1wi(yi− ŷi)

2∑n
i=1wi(yi− ȳ)2

(4)

where wi is the weight associated with calibration level i—
typical weights for calibration curves in analytical chemistry
include wi = 1/xi and wi = 1/

xi2. If these weighted versions
are used, then the simulation of data generated using identical
models with different standard placement cannot reject the
hypothesis that the R2 values are identical (P=0.2819).

Should one insist on calculating a coefficient of correlation
or determination for a heteroscedastic calibration dataset,
weighted versions of the calculations should be used to avoid
the issue of standards repartition influence. Unfortunately,
whereas heteroscedastic datasets are more the norm than the
exception in analytical chemistry, the use of weighted R2

is not systematically available (nor clearly marked) in com-
monly used software; some are even relying exclusively on the
regular, unweighted version of the calculation.
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Conclusions
The r and R2 evaluate whether the data are better explained
by the regression model used than by no model at all, and
to what degree. They describe the strength of the associa-
tion between the x and y variables under the regression model
used.

As we have seen, heteroscedastic calibration data, which
is typical in analytical chemistry, will generate R2 values that
vary with standards spacing, unless a weighted version of the
equation is used. However, even using the proper, weighted
version of the equations for these datasets, throes of other
problems remain with the coefficients of correlation and deter-
mination. All other things being equal, R2 can be influenced
by the precision of the data and the steepness of the calibration
slope. Furthermore, a high value, greater than 0.9, does not
constitute a proof that the data stem from a linear association
between the variables. This begs the question of usefulness
in the context of calibration curves as part of analytical
methods. How can we even determine an acceptability thresh-
old when the R2 result depends this much on experimental
parameters?

Unfortunately, the answer is that neither r nor R2 are use-
ful to satisfy method validation guidelines’ requirement to
demonstrate the linearity of the data or confirm the ade-
quacy of the calibration model used (2, 4–6)—which does
not preclude their use in other contexts. We suggest to stop
using r and R2 as figures of merit for this particular purpose,
especially in formulations such as ‘data linearity was demon-
strated, with R2 = 0.9’ or ‘data were linear (R2 = 0.9)’. These
formulations imply that the R2 value can prove linearity of
the calibration data. Rightly so, a number of method val-
idation guidelines simply do not mention their use in such
circumstances (23–25)—and even explicitly discourage it (4,
5).

Which statistics or methods should then be used for the
intended purpose of testing linearity of the data or confirm-
ing regression model adequacy? While a full review of such
methods is outside the scope of this technical note, sev-
eral options are detailed in a previous publication by the
authors (20). The simplest (yet subjective) solution is the
residual plot, as suggested by several authors and guide-
lines (2–4, 6, 26), which should display a random residuals
pattern. Statistical testing can also be used. ANOVA-Lack-
of-Fit is a popular option (2, 3, 5), although it is known to
be sensitive to experimental design (20). Another option is
Mandel’s fitting test, which compares the sum of squares of
the residuals to the mean squares of residuals (27). A close
cousin is the partial F-test, comparing the sum of squares of
the regression to the mean squares of the residuals (4, 28).
The preference of the authors lay with the latest option
(19, 20), but it is by no means the only available path. In
any event, linearity of the data should always be evaluated
after the homoscedasticity of the data has been assessed, with
weight adjusted formulas if the dataset has been found to be
heteroscedastic.

Supplementary data
Supplementary data is available at Journal of Analytical
Toxicology online.

Data availability
All data are incorporated into the article and its online
supplementary material.
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Arellano, R., Arreguín-Espinosa, R., Carrillo, R.V. (2020)
Quantification and stereochemical composition of R-(−)
and S-(+)-clenbuterol enantiomers in bovine urine by liq-
uid chromatography–tandem mass spectrometry. Journal of
Analytical Toxicology, 44, 237–244.

12. Nanco, C.R., Poklis, J.L., Hiler, M.M., Breland, A.B.,
Eissenberg, T., Wolf, C.E. (2019) An ultra-high-pressure liquid
chromatographic tandem mass spectrometry method for the anal-
ysis of benzoyl ester derivatized glycols and glycerol. Journal of
Analytical Toxicology, 43, 720–725.

13. Kriikku, P., Pelander, A., Rasanen, I., Ojanperä, I. (2019) Toxic
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